Journal of Computational Mathematics
 Home    About Journal    Information for Authors    Editorial Board    Subscribe    Editorial Office
Journal of Computational Mathematics 2012, Vol. 30 Issue (4) :337-353    DOI: 10.4208/jcm.1108-m3677
Original Articles Current Issue | Next Issue | Archive | Adv Search << | Next Articles >>
Carsten Carstensen1,2, Joscha Gedicke1, Donsub Rim3
1. Institut fur Mathematik, Humboldt-Universitat zu Berlin, Unter den Linden 6, 10099 Berlin, Germany;
2. Department of Computational Science and Engineering, Yonsei University, 120-749 Seoul, Korea;
3. Yonsei School of Business and Department of Computational Science and Engineering, Yonsei University, 120-749 Seoul, Korea

Download: PDF (430KB)   HTML (1KB)   Export: BibTeX or EndNote (RIS)      Supporting Info
Abstract The elementary analysis of this paper presents explicit expressions of the constants in the a priori error estimates for the lowest-order Courant, Crouzeix-Raviart nonconforming and Raviart-Thomas mixed nite element methods in the Poisson model problem. The three constants and their dependences on some maximal angle in the triangulation are indeed all comparable and allow accurate a priori error control.
Email this article
Add to my bookshelf
Add to citation manager
Email Alert
Articles by authors
Carsten Carstensen
Joscha Gedicke
Donsub Rim

65N15, 65N12, 65N30

KeywordsError estimates   Conforming   Nonconforming   Mixed   Finite element method     
Received: 2011-02-10; published: 2012-07-06
Cite this article:   
Carsten Carstensen, Joscha Gedicke, Donsub Rim .EXPLICIT ERROR ESTIMATES FOR COURANT, CROUZEIX-RAVIART AND RAVIART-THOMAS FINITE ELEMENT METHODS[J]  Journal of Computational Mathematics, 2012,V30(4): 337-353
URL:      OR
[1] D. Braess, Finite elements, Cambridge University Press, Cambridge, second edition, 2001, Theory,fast solvers, and applications in solid mechanics, Translated from the 1992 German edition byLarry L. Schumaker.
[2] P.G. Ciarlet, The nite element method for elliptic problems, volume 4 of Studies in Mathematicsand its Applications, North-Holland Publishing Co., Amsterdam, 1978.
[3] F. Kikuchi and X. Liu, Estimation of interpolation error constants for the P0 and P1 triangular nite elements, Comput. Methods Appl. Mech. Engrg., 196:37-40 (2007), 3750{3758.
[4] I. Babu ska and A.K. Aziz, On the angle condition in the nite element method, SIAM J. Numer.Anal., 13:2 (1976), 214{226.
[5] G. Acosta and R.G. Dur an, The maximum angle condition for mixed and nonconforming elements:application to the Stokes equations, SIAM J. Numer. Anal., 37:1 (1999), 18{36.
[6] S.C. Brenner and L.R. Scott, The mathematical theory of nite element methods, volume 15 ofTexts in Applied Mathematics, Springer, New York, third edition, 2008.
[7] S. Mao and Z. Shi, Explicit error estimates for mixed and nonconforming nite elements, J.Comput. Math., 27:4 (2009), 425{440.
[8] L.D. Marini, An inexpensive method for the evaluation of the solution of the lowest order Raviart-Thomas mixed method, SIAM J. Numer. Anal., 22:3 (1985), 493{496.
[9] D.N. Arnold and F. Brezzi, Mixed and nonconforming nite element methods: implementation,postprocessing and error estimates, RAIRO Mod el. Math. Anal. Num er., 19:1 (1985), 7{32.
[10] L.E. Payne and H.F. Weinberger, An optimal Poincar e inequality for convex domains, Arch.Rational Mech. Anal., 5 (1960), 286{292.
[11] R.S. Laugesen and B.A. Siudeja, Minimizing Neumann fundamental tones of triangles: an optimalPoincar e inequality, J. Di erential Equations, 249:1 (2010), 118{135.
No related similar found!
Copyright 2010 by Journal of Computational Mathematics