|
|
A Characterization of Generalized Derivations of JSL Algebras |
Lin CHEN1, Fang Yan LU1,2 |
1 Department of Mathematics, Soochow University, Suzhou 215006, P. R. China;
2 Department of Mathematics, Anshun University, Anshun 561000, P. R. China |
|
|
Abstract Let AlgL be a J-subspace lattice algebra on a Banach space X and M be an operator in AlgL. We prove that if δ : Alg L → B(X) is a linear mapping satisfying δ(AB) = δ(A)B + Aδ(B) for all A,B ∈ AlgL with AMB = 0, then δ is a generalized derivation. This result can be applied to atomic Boolean subspace lattice algebras and pentagon subspace lattice algebras.
|
Received: 26 April 2016
|
|
Fund: Supported by the National Natural Science Foundation of China (Grant No. 11571247); the first author is supported by the union program of department of science technology in Guizhou province, Anshun government and Anshun university (Grant No. 201304) |
|
|
|
[1] |
Chebotar, M., Ke, W., Lee, P.: Maps characterized by action on zero products. Pacific J. Math., 216(2), 217-228 (2004)
|
[2] |
Hou, J., Qi, X.: Linear maps Lie derivable at zero on J -subspace lattice algebras. Stud. Math., 197(2), 157-169 (2010)
|
[3] |
Jing, W., Lu, S., Li, P.: Characterization of derivations on some operator algebras. Bull. Austral. Math. Soc., 66(2), 227-232 (2002)
|
[4] |
Li, J., Pan, Z.: On derivable mppings. J. Math. Anal. Appl., 374(1), 311-322 (2011)
|
[5] |
Li, J., Zhou, J.: Jordan left derivations and some left derivable maps. Oper. Matrices, 4(1), 127-138 (2010)
|
[6] |
Longstaff, W. E.: Strongly reflexive lattices. J. London Math. Soc., 11(4), 491-498 (1975)
|
[7] |
Longstaff, W. E., Panaia, O.: J -subspace lattices and subspace M-bases. Stud. Math., 139(3), 197-211 (2000)
|
[8] |
Lu, F.: Characterization of derivations and Jordan derivations on Banach algebras. Linear Algebra Appl., 430(8-9), 2233-2239 (2009)
|
[9] |
Lu, F.: Jordan derivable maps of prime ring. Comm. Algebra., 38(12), 4430-4440 (2010)
|
[10] |
Lu, F., Liu, B.: Lie derivation of reflexive algebras. Integr. Equ. Oper. Theory., 64(2), 261-271 (2009)
|
[11] |
Lu, S. J., Lu, F., Li, P., et al.: Nonself-adjoint Operator Algebra, Science Press, Beijing, 2004
|
[12] |
Pan, Z.: Derivable maps and generalized derivations. Oper. Matrices, 8(4), 1191-1199 (2014)
|
[13] |
Pan, Z.: Derivable maps and derivational points. Linear Algebra Appl., 436(11), 4251-4260 (2012)
|
[14] |
Qi, X., Hou, J.: Additive maps derivable at some points on J -subspace lattice algebras. Linear Algebra Appl., 429(8-9), 1851-1863 (2008)
|
[15] |
Zhu, J., Xiong, C. P.: Derivable mappings at unit operator on nest algebras. Linear Algebra Appl., 422(2- 3), 721-735 (2007)
|
[16] |
Zhu, J., Xiong, C. P.: Generalized derivable mappings at zero point on some reflexive algebras. Linear Algebra Appl., 397, 367-379 (2005)
|
|
|
|