|
|
Decay of Correlations for Fibonacci Unimodal Interval Maps |
Rui GAO1, Wei Xiao SHEN2 |
1. College of Mathematics, Sichuan University, Chengdu 610064, P. R. China; 2. Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, P. R. China |
|
|
Abstract We consider a class of generalized Fibonacci unimodal maps for which the central return times {sn} satisfy that sn=sn-1 + κsn-2 for some κ ≥ 1. We show that such a unimodal map admits a unique absolutely continuous invariant probability with exactly stretched exponential decay of correlations if its critical order lies in (1, κ + 1).
|
Received: 14 September 2016
|
|
Fund:The second author was supported by AcRF-Tier 1 grant from MOE, Singapore (Grant No. R-146-000-199-112) |
|
|
|
[1] |
Bruin, H., Shen, W. X., Sebastian van Strien:Invariant measures exist without a growth condition. Comm. Math. Phys., 241(2-3), 287-306(2003)
|
[2] |
de Melo, W., van Strien, S.:One-dimensional dynamics, 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3)[Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1993
|
[3] |
Gouëzel, S.:Decay of correlations for nonuniformly expanding systems. Bull. Soc. Math. France, 134(1), 1-31(2006)
|
[4] |
Keller, G.:Exponents, attractors and Hopf decompositions for interval maps. Ergodic Theory Dynam. Systems, 10(4), 717-744(1990)
|
[5] |
Keller, G., Nowicki, T.:Fibonacci maps re(al)visited. Ergodic Theory Dynam. Systems, 15(1), 99-120(1995)
|
[6] |
Kozlovski, O. S.:Getting rid of the negative Schwarzian derivative condition. Ann. of Math. (2), 152(3), 743-762(2000)
|
[7] |
Li, S. M., Wang, Q. H.:A new class of generalized Fibonacci unimodal maps. Nonlinearity, 27(7), 1633-1643(2014)
|
[8] |
Lyubich, M., Milnor. J.:The Fibonacci unimodal map. J. Amer. Math. Soc., 6(2), 425-457(1993)
|
[9] |
Nowicki, T., Sands, D.:Non-uniform hyperbolicity and universal bounds for S-unimodal maps. Invent. Math., 132(3), 633-680(1998)
|
[10] |
Przytycki, F., Rivera-Letelier, J.:Statistical properties of topological Collet-Eckmann maps. Ann. Sci. École Norm. Sup. (4), 40(1), 135-178(2007)
|
[11] |
Rivera-Letelier, J., Shen, W. X.:Statistical properties of one-dimensional maps under weak hyperbolicity assumptions. Ann. Sci. École Norm. Sup. (4), 47(6), 1027-1083(2014)
|
[12] |
Sarig, O.:Subexponential decay of correlations. Invent. Math., 150(3), 629-653(2002)
|
[13] |
Shen, W. X.:Decay of geometry for unimodal maps:an elementary proof. Ann. of Math. (2), 163(2), 383-404(2006)
|
[14] |
van Strien, S., Vargas, E.:Real bounds, ergodicity and negative Schwarzian for multimodal maps. J. Amer. Math. Soc., 17(4), 749-782(electronic) (2004)
|
[15] |
Young, L. S.:Recurrence times and rates of mixing. Israel J. Math., 110, 153-188(1999)
|
|
|
|