On the Toroidal Leibniz Algebras
Acta Mathematica Sinica, English Series
HOME| ABOUT JOURNAL | EDITORIAL BOARD | FOR AUTHORS| SUBSCRIPTIONS| ADVERTISEMENT| CONTACT US
 
Acta Mathematica Sinica,
Chinese Series
 
   
   
Adv Search »  
Acta Mathematica Sinica, English Series  2008, Vol. 24 Issue (2): 227-240    DOI: 10.1007/s10114-007-1003-z
articles Current Issue | Next Issue | Archive | Adv Search  |   
On the Toroidal Leibniz Algebras
Dong LIU1, Lei LIN2
1. Department of Mathematics, Huzhou Teachers College, Huzhou, 313000, P. R. China;
2. Department of Mathematics, East China Normal University, Shanghai, 200062, P. R. China
 Download: PDF (279 KB)   HTML (0 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Toroidal Leibniz algebras are the universal central extensions of the iterated loop algebras ġ⊕C[t1±1 ,...,tv±1 ] in the category of Leibniz algebras. In this paper, some properties and representations of toroidal Leibniz algebras are studied. Some general theories of central extensions of Leibniz algebras are also obtained.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Dong LIU
Lei LIN
Key wordsToroidal Leibniz algebra   derivation and automorphism   universal central extension     
Received: 2005-07-15;
Fund: D. Liu is supported by the NNSF (Grants 10671027, 10271076, 10701019), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 06KJB110003). L. Lin is supported in part by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT), and the Shanghai Priority Academic Discipline from the SMEC
Cite this article:   
Dong LIU,Lei LIN. On the Toroidal Leibniz Algebras[J]. Acta Mathematica Sinica, English Series, 2008, 24(2): 227-240.
URL:  
http://www.actamath.com/Jwk_sxxb_en//EN/10.1007/s10114-007-1003-z      or     http://www.actamath.com/Jwk_sxxb_en//EN/Y2008/V24/I2/227
 
[1] Loday, J. L.: Cup-product for Leibniz cohomology and dual Leibniz algebras. Math. Scand., 77, 189-196(1995)
[2] Li, H. S., Yamskulna, G.: On certain vertex algebras and their modules associated with vertex algebroids. J. Alg., 283(1), 367-398 (2005)
[3] Li, H. S., Yamskulna, G.: Twisted modules for vertex algebras associated with vertex algebroids, Math. QA/0503272
[4] Loday, J. L.: Cyclic Homology, (second edition), Grundl. Math. Wiss. 301, Springer-Verlag, Berlin, 1998
[5] Loday, J. L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)-homology. Math. Ann., 296 138-158 (1993)
[6] Liu, D., Hu, N. H.: Leibniz Central Extensions on Some Infinite-Dimensional Lie Algebras. Comm. Alg., 32(6), 2385-2405 (2004)
[7] Moody, R. V., Rao, S. E., Yomonuma, T.: Toroidal Lie algebras and vertex representations. Geom. Ded., 35, 287-307 (1990)
[8] Eswara Rao, V., Moody, R. V.: Vertex represenations for n-toroidal Lie algebras and a generalization of the Virasoro algebra. Comm. Math. Phys., 159, 239-264 (1994)
[9] Jiang, C. P., Meng, D. J.: Vertex representations of the v + 1-toroidal Lie algebra of type Bl(1) . J. Alg., 246, 564-593 (2001)
[10] Liu, D., Hu, N. H.: Vertex operator representations for v + 1-toroidal Lie algebra of type G2. J. Pure and Applied Alg., J. Pure and Applied Alg., 198, 257-279 (2005)
[11] You, H., Jiang, C. P.: Vertex operator construction for the Toroidal Lie algebra of type F4. Comm. Algebra, 31(5), 2161-2182 (2003)
[12] Tan, S. B.: Vertex operator representations for toroidal Lie algebra of type Bl. Comm. Algebra, 27,3593-3618 (1999)
[13] Kassel, C.: K?hler differential and covering of complex simple Lie algebra extended over a commutative algebra. J. Pure Appl. Algebra, 34, 265-275 (1985)
[14] Gao, Y.: The second Leibniz homology group for Kac-Moody Lie algebras. Bull. of LMS, 32, 25-33 (2000)
[15] Gao, Y.: Leibniz homology of unitary Lie algebras. J. Pure Appl. Algebra, 140, 33-56 (1999)
[16] Allahtan Victor, G.: Leibniz homology of extended Lie algebras. K-Theory 13, 2, 169-178 (1998)
[17] Liu, D., Hu, N. H.: Leibniz algebras graded by finite root systems. Preprint
[18] Loday, J. L.: Une version non commutative des algèbres de Lie: Les algèbres de Leibniz. Enseign. Math., 39, 269-294 (1993)
[19] Loday, J. L.: Dialgebras. Springer, Lecture Notes in Mathematics, 1763, 7-66 (2001)
[20] Pirashvili, T.: On Leibniz homology. Ann. Inst. Fourier (Grenoble), 44(2), 401-411 (1994)
[21] Gnedbaye, A. V.: Leibniz homology of extended Lie algebras. K-Theory, 13(2), 169-178 (1998)
[22] Benkart, G. M., Moody, R. V.: Derivations, central extensions and affin Lie algebras. Algebras Groups Geom. 3, 4, 456-492 (1986)
[23] Pianzola, A.: Automorphisms of toroidal Lie algebras and their central quotients. Journal of Algebra and its Applications, 1(1), 113-121 (2002)
[24] Cuvier, C.: Homologie de Leibniz et homologie de Hochschild. C. R. Acad. Sci. Paris Sér. A-B, 313, 569-572 (1991)
[25] Frenkel, I. B., Lepowsky, J., Meurman, A.: "Vertex Operator Algebras and the Monster", Academic Press, Boston, 1989
[26] Gnedbaye, A. V.: Third homology groups of universal central extensions of a Lie algebra. Afrika Mat., 3(10), 46-63 (1999)
[27] Kassel, C., Loday, J. L.: Extensions centrales d'alg'ebres de Lie. Ann. Inst. Fourier, 33(4), 119-142 (1982)
[28] Liu, D.: Steinberg-Leibniz algebras and superalgebras. J. Alg., 283(1), 199-221 (2005)
[29] Liu, D., Hu, N. H.: Leibniz superalgebras and central extensions. Journal Algebra and its Applications, 5(6), 765-780 (2006)
[30] Loday, J. L.: Algebraic K-theory and the conjectural Leibniz K-theory, Preprint
[31] Xia, L. M., Hu, N. H.: Irreducible representations for Virasoro-toroidal Lie algebras. J. Pure Appl. Algebra, 194(1-2), 213-237 (2004)
No Similar of article
  Copyright 2012 © Editorial Office of Acta Mathematica Sinica
京ICP备05002806号-7