Hochschild (Co)homology of a Class of Nakayama Algebras
Acta Mathematica Sinica, English Series
HOME| ABOUT JOURNAL | EDITORIAL BOARD | FOR AUTHORS| SUBSCRIPTIONS| ADVERTISEMENT| CONTACT US
 
Acta Mathematica Sinica,
Chinese Series
 
   
   
Adv Search »  
Acta Mathematica Sinica, English Series  2008, Vol. 24 Issue (7): 1097-1106    DOI: 10.1007/s10114-007-6072-5
articles Current Issue | Next Issue | Archive | Adv Search  |   
Hochschild (Co)homology of a Class of Nakayama Algebras
Yun Ge XU, Dan WANG
Faculty of Mathematics & Computer Science, Hubei University, Wuhan, 430062, P. R. China
 Download: PDF (251 KB)   HTML (0 KB)   Export: BibTeX | EndNote (RIS)      Supporting Info
Abstract Let Λ = kQ/I be a finite-dimensional Nakayama algebra, where Q is an Euclidean diagram Ãn for some n with cyclic orientation, and I is an admissible ideal generated by a single monomial relation. In this note we determine explicitly all the Hochschild homology and cohomology groups of Λ based on a detailed description of the Bardzell complex. Moreover, the cyclic homology of Λ can be calculated in the case that the underlying field is of characteristic zero.
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Yun Ge XU
Dan WANG
Key wordsNakayama algebra   Hochschild homology   cyclic homology   Hochschild cohomology     
Received: 2006-02-17;
Fund: Supported by National Natural Science Foundation of China (Grant Nos. 10426014 and 10501010)
Cite this article:   
Yun Ge XU,Dan WANG. Hochschild (Co)homology of a Class of Nakayama Algebras[J]. Acta Mathematica Sinica, English Series, 2008, 24(7): 1097-1106.
URL:  
http://www.actamath.com/Jwk_sxxb_en//EN/10.1007/s10114-007-6072-5      or     http://www.actamath.com/Jwk_sxxb_en//EN/Y2008/V24/I7/1097
 
[1] Mac Lane, S.: Homology, Grundlehren Math. Wiss. 114, Springer, Berlin, 1975
[2] Happel, D.: Hochschild cohomology of finite-dimensional algebras. Lecture Notes in Mathematics, 1404, 108-126 (1989)
[3] Skowroński, A.: Simply connected algebras and Hochschild cohomology. Proc. ICRA IV (Ottawa, 1992), Can. Math. Soc. Proc., 14, 431-447 (1993)
[4] Assem, I., de la Peña, J. A.: The foundamental groups of a triangular algebra. Comm. Algebra, 24, 187-208 (1996)
[5] Gerstenhaber, M.: On the deformation of rings and algebras. Ann. Math., 79, 59-103 (1964)
[6] Igusa, K.: Notes on the no loop conjecture. J. Pure Appl. Algebra, 69, 161-176 (1990)
[7] Liu, S. X., Zhang, P.: Hochschild homology of truncated algebras. Bull. London Math. Soc., 26, 427-430(1994)
[8] Avramov, L. L., Vigueé-Poirrier, M.: Hochschild homology criteria for smoothness. Internat. Math. Research Notices, 1, 17-25 (1992)
[9] Han, Y.: Hochschild (co)homology dimension. J. London Math. Soc., 73(2), 657-668 (2006)
[10] Keller, B.: Invariance and localization for cyclic homology of DG algebras. J. Pure Appl. Algebra, 123, 223-273 (1998)
[11] Erdmann, K., Holm, T.: Twisted bimodules and Hochschild cohomology for self-injective algebras of class An. Forum Math., 11, 177-201 (1999)
[12] Bardzell, M. J., Locateli, A. C., Marcos, E. N.: On the Hochschild cohomology of truncated cycle algebras. Comm Alg., 28(3), 1615-1639 (2000)
[13] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras, London Math. Soc. Student Texts 65, Cambridge Univ. Press, Cambridge, 2005
[14] Snashall, N., Solberg, Φ.: Support varieties and Hochschild cohomology rings. Proc. London Math. Soc, 88(3), 705-732 (2004)
[15] Bardzell, M. J.: The alternating syzygy behavior of monomial algebras. J. Alg., 188, 69-89 (1997)
[16] Holm, T.: Hochschild cohomology rings k[X]/(f). Beitrage Algebra Geom., 41, 291-301 (2000)
[17] Loday, J. L.: Cyclic homology, Grundlehren 301, Springer, Berlin, 1992
No Similar of article
  Copyright 2012 © Editorial Office of Acta Mathematica Sinica
京ICP备05002806号-7