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Abstract The aim of this paper is mainly to build a new representation-theoretic realization of finite

root systems through the so-called Frobenius-type triangular matrix algebras by the method of reflection

functors over any field. Finally, we give an analog of APR-tilting module for this class of algebras.

The major conclusions contains the known results as special cases, e.g., that for path algebras over

an algebraically closed field and for path algebras with relations from symmetrizable cartan matrices.

Meanwhile, it means the corresponding results for some other important classes of algebras, that is,

the path algebras of quivers over Frobenius algebras and the generalized path algebras endowed by

Frobenius algebras at vertices.

Keywords Frobenius-type triangular matrix algebras, reflection functor, locally free module, root

system, APR-tilting module
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1 Introduction and Preliminaries

Let Q be a finite connected acyclic quiver, and let H = kQ be the path algebra of Q for an
algebraically closed field k. Gabriel showed that the quiver Q is representation-finite if and only
if Q is a Dynkin quiver of type An, Dn, E6, E7, E8 in [8]. In this case, there is a bijection between
the isomorphism classes of indecomposable representations of Q and the set of positive roots
of the corresponding simple complex Lie algebra. Bernštĕın et al. introduced the machinery of
Coxeter functors, which are defined as compositions of reflection functors, to give an elegant
proof of Gabriel’s theorem in [5]. Gabriel also showed that there are functorial isomorphisms
SC±(−) ∼= τ±(−) in [9], where S is a twist functor, C± are the Coxeter functors and τ (−)
is the Auslander–Reiten translation. Auslander et al. showed that there exists an H-module
T satisfying the functorial isomorphisms F±

k (−) ∼= HomH(T,−) in [4] for the BGP-reflection
functors F±

k and the APR-tilting module T .
Some of these results have been developed to valued graphs or k-species by Dlab and Ringel

for a field k, see [6, 7, 18]. Moreover, in [10], for any field k, Geiss et al. generalized them to
a class of 1-Gorenstein algebras A, which were defined via quivers with relations associated to
symmetrizable Cartan matrices, as follows.
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Let C = (cij) ∈Mn(Z) be a symmetrizable generalized Cartan matrix with a symmetrizer
D = diag(c1, . . . , cn). For all cij < 0, write that gij := |gcd(cij , cji)|, fij := |cij |/gij , kij :=
gcd(ci, cj).

An orientation of C is a subset Ω ⊂ {1, 2, . . . , n}×{1, 2, . . . , n} such that the following hold:

(i) {(i, j), (j, i)} ∩ Ω �= ∅ if and only if cij < 0;

(ii) For each sequence ((i1, i2), (i2, i3), . . . , (it, it+1)) with t ≥ 1 and (is, is+1) ∈ Ω for all
1 ≤ s ≤ t we have i1 �= it+1.

For an orientation Ω of C, let Q := Q(C,Ω) := (Q0, Q1, s, t) be the quiver with the set of
vertices Q0 := {1, . . . , n} and the set of arrows

Q1 := {α(g)
ij : j → i|(i, j) ∈ Ω, 1 ≤ g ≤ gij} ∪ {εi : i→ i|1 ≤ i ≤ n}.

For a quiver Q = Q(C,Ω) and a symmetrizer D = diag(c1, . . . , cn) of C, let

A = A(C,D,Ω) := kQ/I, (1.1)

where kQ is the path algebra of Q, and I is the ideal of kQ defined by the following relations:

(i) For each i, we have the nilpotency relation εci
i = 0.

(ii) For each (i, j) ∈ Ω and each 1 ≤ g ≤ gij , we have the commutativity relation εfji

i α
(g)
ij =

α
(g)
ij ε

fij

j .

It was proved in [10] that the algebra A, given in (1.1) is 1-Gorenstein.

The aim of this paper is to give a larger class of 1-Gorenstein algebras in which the important
conclusions about representation theory still hold. More specifically, using of the dual basis
lemma and the method of reflection functors which developed by Gabriel et al., we will build a
new representation-theoretic realization of finite root systems through Frobenius-type triangular
matrix algebras.

In the sequel, the ground field k is always permitted to be any field.

For n ≥ 2, define a triangular matrix algebra Γ of order n satisfying

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 A12 . . . A1n

0 A2 . . . A2n

...
...

. . .
...

0 0 · · · An

⎞
⎟⎟⎟⎟⎟⎟⎠
,

where each Ai is an algebra and Aij an Ai-Aj-bimodule with bimodule maps μilj : Ail⊗Al
Alj →

Aij such that the following diagram commutes:

Ail ⊗Al
Alj ⊗Aj

Ajt
μilj⊗idAjt−−−−−−−→ Aij ⊗Aj

Ajt

idAil
⊗μljt

⏐⏐	
⏐⏐	μijt

Ail ⊗Al
Alt

μilt−−−−→ Ait

for 1 ≤ i < l < j < t ≤ n, whose multiplication is given by (AB)ij =
∑
i<l<j μilj(ail ⊗ blj) for

A = (aij)n×n, B = (bij)n×n ∈ Γ, where (AB)ij means the (i, j)-entry of AB.
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A representation X of Γ is defined as a datum

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

Xn

⎞
⎟⎟⎟⎟⎟⎟⎠
φij

,

with φij : Aij ⊗Aj
Xj → Xi an Ai-module morphism for 1 ≤ i < j ≤ n so that it satisfies the

following commutative diagram:

Aij ⊗Aj
Ajq ⊗Aq

Xq

μijq⊗idXq−−−−−−−→ Aiq ⊗Aq
Xq

idAij
⊗φjq

⏐⏐	
⏐⏐	φiq

Aij ⊗Aj
Xj

φij−−−−→ Xi.

A morphism f from a representation X to another representation Y is defined as a datum
(fi, 1 ≤ i ≤ n), where fi : Xi → Yi is an Ai-map such that fiφij = φij(idAi,j

⊗ fj) for each
1 ≤ i < j ≤ n.

Then we obtain the representation category of Γ, denoted as Rep(Γ).
Recall that a finite dimensional algebra A is said to be a Frobenius algebra if there exists

an isomorphism of left modules AA ∼= D(AA), where D := Homk(−, k). See [17].

Definition 1.1 For each i = 1, . . . , n, let Ai be a Frobenius algebra with unit ei. For each
1 ≤ i < j ≤ n, let Bij be an Ai-Aj-bimodule such that Bij is a free left Ai-module and free
right Aj-module of finite rank respectively. Suppose there are Ai-Aj-bimodule isomorphisms
HomAi

(Bij , Ai) ∼= HomAj
(Bij , Aj) for all 1 ≤ i < j ≤ n. Let

Aij = ⊕j−i−1
l=0 ⊕i<k1<k2<···<kl<j Bik1 ⊗Ak1

Bk1k2 ⊗ · · · ⊗Akl
Bklj (1.2)

for 1 ≤ i < j ≤ n, where l = 0 means the direct summand Bij.
Define a triangular matrix algebra

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 A12 . . . A1n

0 A2 . . . A2n

...
...

. . .
...

0 0 · · · An

⎞
⎟⎟⎟⎟⎟⎟⎠

which is called a Frobenius-type triangular matrix algebra, if it satisfies (1.2) with bimodule
maps μijq : Aij ⊗Aj

Ajq → Aiq are the natural inclusion maps.

The algebra A = A(C,D,Ω) = kQ/I in (1.1) from [10] is indeed a Frobenius-type triangular
matrix algebra. To see this, one needs only to re-order vertexes by i < j if (i, j) ∈ Ω and take
Ai = eiAei, Bij = AiSpank(α

(g)
ij |1 ≤ g ≤ gij)Aj . It is easy to see that such A satisfies the

condition of Frobenius-type triangular matrix algebra in Definition 1.1.
Following this fact, in this paper the major results on Frobenius-type triangular matrix

algebras are the improvement of the corresponding ones in [10]. For convenience, in the sequel,
we will always assume Ai to be finite dimensional for all i = 1, . . . , n.
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Remark 1.2 (i) In Definition 1.1, if each Ai is only a finite dimensional algebra, and the
condition HomAi

(Bij , Ai) ∼= HomAj
(Bij , Aj) is replaced by that HomAi

(Bij , Ai) is a projective
Aj-module or an injective Aj-module, then Λ is called a normally upper triangular gm algebra,
which was introduced and investigated in [15].

Since HomAj
(Bij , Aj) is a free left Aj-module and HomAi

(Bij , Ai) ∼= HomAj
(Bij , Aj), we

obtain that HomAi
(Bij , Ai) is a free left Aj-module, then, of course, a projective Aj-module.

So all Frobenius-type triangular matrix algebras are normally upper triangular gm algebras.
(ii) In Definition 1.1, let Bij = 0 for all |i− j| ≥ 2, and let Ai be any rings. Then we obtain

a class of triangular matrix rings which were studied in [20] about their module categories and
some homological characterizations.

(iii) A path algebra of quiver over algebra Λ = AQ = A
⊗

k kQ for an acyclic quiver Q and
a Frobenius algebra A studied in [19] is also a Frobenius-type triangular matrix algebra. Here
one needs only to take all Ai = A and Bij =

⊕#{α:j→i}
s=1 A. In particular, it was investigated

in [19] for the case A = k[T ]/[T 2] the algebra of dual numbers.
(iv) A generalized path algebra Λ = k(Q,A), with an acyclic quiver Q, A = {Ai}i∈Q0 and

Forbenius algebras Ai (i ∈ Q0), is a Frobenius-type triangular matrix algebra through taking
all Bij to be generalized arrows from j to i and thus obtaining Aij as generalized paths from j

to i. For more details, see [15].

Let

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

Xn

⎞
⎟⎟⎟⎟⎟⎟⎠
φij

be a Λ-module. It is easy to see that φij : Aij
⊗

Aj
Xj → Xi is uniquely determined by

φij |Res(Bij

⊗
Xj) : Bij

⊗
Aj
Xj → Xi for 1 ≤ i < j ≤ n.

Remark 1.3 Without ambiguity, we sometimes omit to write φij , especially when φij is a
natural inclusion for all 1 ≤ i < j ≤ n.

Remark 1.4 In this paper, we consider only Λ which is connected, that is, Λ can NOT be
written as ⎛

⎝ Λ1 0

0 Λ2

⎞
⎠

for two non-zero Frobenius-type triangular matrix algebras Λ1 and Λ2. Otherwise, for

Λ =

⎛
⎝ Λ1 0

0 Λ2

⎞
⎠ ,

any representation M of Λ can be obtained from representations Mi of Λi (i = 1, 2). Roughly
speaking,

M =

⎛
⎝ M1

0

⎞
⎠⊕

⎛
⎝ 0

M2

⎞
⎠ .
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Our main result is as follows.

Theorem 1.5 For a Frobenius-type triangular matrix algebra Λ, the following statements
hold :

(a) The number of isomorphism classes of indecomposable τ -locally free Λ-modules is finite
if and only if C is of Dynkin type.

(b) If C is of Dynkin type, then the mapping rank : X �→ rank(X) induces a bijection
between the set of isomorphism classes of indecomposable τ -locally free Λ-modules and the set
of positive roots of the quadratic form qC(x).

Theorem 1.6 For a Frobenius-type triangular matrix algebra Λ, there is a functorial isomor-
phism

F+
1 (−) ∼= HomΛ(T1,−) : rep(Λ)→ rep(S1(Λ)).

This article is organized as follows. In Section 2, we study some properties of Frobenius-
type triangular matrix algebras and in particular, show that they are a class of 1-Gorenstein
algebras. In Section 3, we define the reflection functors for Frobenius-type triangular matrix
algebras and give the relation between Coxeter functors and Auslander–Reiten translation for
these algebras. In Section 4, we recall some definitions and basic facts on Cartan matrices,
quadratic forms and Weyl groups. Then we give a new representation-theoretic realizations of
all finite root systems via Frobenius-type triangular matrix algebras. In Section 5, we study the
generalized versions of APR-tilting modules over Frobenius-type triangular matrix algebras.

One of our motivation is, in the further work, using the results in this paper, to characterise
the categorification of cluster algebras in the case for skew-symmetrizable type.

2 Locally Free Modules and 1-Gorenstein Property

Proposition 2.1 ([15]) The representation category of a Frobenius-type triangular matrix
algebra Λ and the module category of Λ are equivalent.

We denote Bji = HomAi
(Bij , Ai) ∼= HomAj

(Bij , Aj) for 1 ≤ i < j ≤ n.

Proposition 2.2 For 1 ≤ i < j ≤ n, Bji is a free left Aj-module and a free right Ai-module.
Also, we have Bij = HomAi

(Bji, Ai) ∼= HomAj
(Bji, Aj).

Proof By the Frobeniusness of Ai, we have the isomorphism HomAi
(HomAi

(−, Ai), Ai) ∼= 1.
Then the result follows.

Proposition 2.3 For any Aj-module Mj and Ai-module Ni, we have the isomorphism

HomAi

(
Bij

⊗
Aj

Mj , Ni

)
∼= HomAj

(
Mj , Bji

⊗
Ai

Ni

)
.

Proof The adjunction map gives an isomorphism of k-vector spaces:

HomAi

(
Bij

⊗
Aj

Mj , Ni

)
∼= HomAj

(Mj ,HomAi
(Bij , Ni)).

Since HomAi
(Bij , Ni) ∼= HomAi

(Bij , Ai
⊗

Ai
Ni)

(∗)∼= HomAi
(Bij , Ai)

⊗
Ai
Ni ∼= Bji

⊗
Ai
Ni, we

have

HomAi

(
Bij

⊗
Aj

Mj , Ni

)
∼= HomAj

(
Mj , Bji

⊗
Ai

Ni

)
,
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where the second isomorphism (∗) follows from that Bij is a finitely generated free Ai-module.

Lemma 2.4 (The Dual Basis Lemma) Let A be an algebra, and P be a finitely generated
projective A-module, HomA(P,A). Then there exist x1, . . . , xm ∈ P, f1, . . . , fm ∈ HomA(P,A),
such that for each x ∈ P, x =

∑m
i=1 fi(x)xi.

Since Bij is a finitely generated projective left Ai-module and a finitely generated projective
right Aj-module, by the above lemma, there exist Lij ⊆ Bij , L

∗
ij ⊆ HomAi

(Bij , Ai) and
Rij ⊆ Bij , R

∗
ij ⊆ HomAj

(Bij , Aj) such that for each bij ∈ Bij , bij =
∑
�∈Lij

�∗(bij)� =∑
r∈Rij

r∗(bij)r.
For the isomorphism in Proposition 2.3, for each φij ∈ HomAi

(Bij
⊗

Aj
Mj , Ni), we have

φij ∈ HomAj
(Mj , Bji

⊗
Ai
Ni) satisfying φij(mj) =

∑
�∈Lij

�∗ ⊗ φij(�⊗mj).
On the other hand, for each ψij ∈ HomAj

(Mj , Bji
⊗

Ai
Ni), we have ψij ∈ HomAi

(Bij
⊗

Aj

Mj , Ni) satisfying ψij(bij ⊗mj) =
∑
�∈Lij

�∗(bij)ψij(mj)�, where the elements ψij(mj)l ∈ Ni
are uniquely determined by ψij(mj) =

∑
�∈Lij

�∗ ⊗ ψij(mj)�.
Let Λ be a Frobenius-type triangular matrix algebra as in Definition 1.1. Denote Pi = Λei

the projective Λ-module for the idempotent ei as the unit 1 of Ai and Ii the corresponding
injective Λ-module for 1 ≤ i ≤ n. Obviously,

Pi = (A1i, A2i, . . . , Aii, 0, . . . , 0)t. (2.1)

Also, we denote Ei the Λ-module (0, . . . , Ai, . . . , 0)tφlj
, where Ai is in the i-th row and all

φlj = 0.

Lemma 2.5 For two k-algebras A and B, assume that M is an A-B-bimodule such that M is
a projective left A-module, and P is a projective left B-module. Then M

⊗
B P is a projective

left A-module.

Proposition 2.6 For Ei = (0, . . . , Ai, . . . , 0)tφlj
with i = 1, . . . , n, it holds that proj.dim(Ei) ≤

1 and inj.dim(Ei) ≤ 1.

Proof Clearly, E1 = P1. For every i = 2, . . . , n, we have exact sequences:

0→
i−1⊕
j=1

Pj
⊗
Aj

Bji → Pi → Ei → 0. (2.2)

So, proj.dim(Ei) ≤ 1 by Lemma 2.5. Let E′
i be the right Λ-module such that D(E′

i) ∼= Ei. For
i = 1, . . . , n− 1, since Ai is a Frobenius algebra, there is a canonical exact sequence

0→
n⊕

j=i+1

Bij
⊗
Aj

ejΛ→ eiΛ→ E′
i → 0. (2.3)

Applying the duality D to (2.3), we get a minimal injective resolution

0→ Ei → D(eiΛ)→
n⊕

j=i+1

D

(
Bij

⊗
Aj

ejΛ
)
→ 0. (2.4)

Clearly, En is injective. So, inj.dim(Ei) ≤ 1 for 1 ≤ i ≤ n.

Definition 2.7 For a Frobenius-type triangular matrix algebra Λ, following [10], a finitely
generated Λ-representation X is called locally free if Xi are free Ai-modules for all 1 ≤ i ≤ n.

Denote by repl.f.(Λ) the subcategory of all locally free Λ-modules.
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Corollary 2.8 For a Frobenius-type triangular matrix algebra Λ, suppose X ∈ repl.f.(Λ), then
it holds that proj.dim(X) ≤ 1 and inj.dim(X) ≤ 1.

Proof We have a short exact sequence

0→ e1X → X → (1− e1)X → 0,

where e1X and (1 − e1)X are locally free. By Proposition 2.6 and using induction on n, we
know that the projective and the injective dimensions of e1X and (1− e1)X are at most one.

Remark 2.9 For the algebra A = A(C,D,Ω) in [10], the three conditions

X ∈ repl.f.(A), proj.dim(X) ≤ 1, inj.dim(X) ≤ 1

are equivalent. But it is generally not true for a Frobenius-type triangular matrix algebra.

An algebra A is called m-Gorenstein if inj.dim(A) ≤ m and proj.dim(DA) ≤ m. Such
algebras were firstly introduced and studied in [11].

Corollary 2.10 The Frobenius-type triangular matrix algebra Λ is a 1-Gorenstein algebra.

Proof It is a direct consequence of Corollary 2.8.
More general discussion related to this corollary can also be found in [21], in the various

way.
Recall that for an algebra A, an A-module X is τ -rigid (resp. τ−-rigid) if HomA(X, τ (X)) =

0 (resp. HomA(τ−(X), X) = 0). We call the Λ-mod X rigid if Ext1Λ(X,X) = 0. See [1].
When proj.dim(X) ≤ 1, we have a functorial isomorphism Ext1A(X,Y ) ∼= DHomA(Y, τ(X));

when inj.dim(X) ≤ 1, we have a functorial isomorphism Ext1A(X,Y ) ∼= DHomA(τ−(Y ), X).
See [3].

Corollary 2.11 For a Frobenius-type triangular matrix algebra Λ, let X ∈ repl.f.(Λ). Then
X is rigid if and only if X is τ -rigid, also if and only if X is τ−-rigid.

Proposition 2.12 For a Frobenius-type triangular matrix algebra Λ, the subcategory repl.f.(Λ)
is closed under extensions, kernels of epimorphisms and cokernels of monomorphisms.

Proof Let 0 → X
f→ Y

g→ Z → 0 be a short exact sequence in rep(Λ). For each 1 ≤ i ≤ n,
this induces a short exact sequence

0→ eiX
f→ eiY

g→ eiZ → 0 (2.5)

of left Ai-modules.
By the definition, when X,Z ∈ repl.f.(Λ), eiX, eiZ are both Ai-free, and then eiX is

injective via Ai is a Frobenius algebra and eiZ is projective for any i. Hence, the short exact
sequence (2.5) splits, i.e., eiY ∼= eiX

⊕
eiZ. It follows that each eiY is free Ai-module and

then Y ∈ repl.f.(Λ).
When Y, Z ∈ repl.f.(Λ), eiY, eiZ are both Ai-free and then eiZ is a projective module.

Hence (2.5) splits, i.e., eiY ∼= eiX
⊕
eiZ. By the Krull–Schmidt theorem, it is easy to see that

each eiX is a free Ai-module. So, X ∈ repl.f.(Λ).
When X,Y ∈ repl.f.(Λ), eiX, eiY are both Ai-free and then eiX is injective via Ai is a

Frobenius algebra. Hence (2.5) splits. Similarly, by the Krull–Schmidt theorem, each eiZ is
free Ai-module. So, Z ∈ repl.f.(Λ).
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3 Reflection Functors and AR-translation

Let

Λ =

⎛
⎜⎜⎜⎜⎜⎜⎝

A1 A12 . . . A1n

0 A2 . . . A2n

...
...

. . .
...

0 0 · · · An

⎞
⎟⎟⎟⎟⎟⎟⎠

be a Frobenius-type triangular matrix algebra. Denote

S1(Λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2 A23 . . . A2n A21

0 A3 . . . A3n A31

...
...

. . .
...

...

0 0 · · · An An1

0 0 · · · 0 A1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where Bj1 = HomA1(B1j , A1) and

Aj1 =
n−j⊕
l=0

⊕
j<k1<k2<···<kl≤n

Bjk1

⊗
Ak1

Bk1k2

⊗
· · ·

⊗
Akl

Bkl1

for j = 2, . . . , n.
Bj1 is a free right A1-module and also a free left Aj-module, since Bj1 = HomA1(B1j , A1) ∼=

HomAj
(B1j , Aj). For S1(Λ), we have

HomA1(Bj1, A1) ∼= HomA1(HomA1(B1j , A1), A1) ∼= B1j

∼= HomAj
(HomAj

(B1j , Aj), Aj) ∼= HomAj
(Bj1, Aj),

which means that S1(Λ) is still a Frobenius-type triangular matrix algebra.
Using the same method in sequence, we can obtain the Frobenius-type triangular matrix

algebra SkSk−1 · · ·S1(Λ) for any k. In particular, it can be seen that Λ ∼= SnSn−1 · · ·S1(Λ).
A reflection functor F+

1 : rep(Λ)→ rep(S1(Λ)) can be described as follows.
For

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

Xn

⎞
⎟⎟⎟⎟⎟⎟⎠
φij

∈ rep(Λ),

define

F+
1 (X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

X2

...

Xn

X ′
1

⎞
⎟⎟⎟⎟⎟⎟⎠
φ′

ij

,
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with X ′
1 = Ker(X1, in), where

X1, in :
n⊕
k=2

B1k

⊗
Ak

Xk → X1.

Denote by ψi1 the composition of the inclusion map X ′
1 ↪→

⊕n
k=2B1k

⊗
Ak
Xk and the projec-

tion
⊕n

k=2B1k

⊗
Ak
Xk � B1i

⊗
Ai
Xi. Then

φ′ij =

⎧⎨
⎩

ψi1, for j = 1;

φij , otherwise.

For a morphism f = {fi} : X → Y in rep(Λ), F+
1 (f) = f ′ = {f ′i} where f ′i = fi for

i = 2, . . . , n and f ′1 is the unique morphism making the following diagram commutes:

0 �� Ker(X1, in)

f ′
1

���
�
�

��
⊕n

k=2B1k

⊗
Ak
Xk

X1,in��

⊕id⊗fk

��

X1

f1

��
0 �� Ker(Y1, in) ��

⊕n
k=2B1k

⊗
Ak
Yk

Y1,in�� Y1.

Similarly, for

X =

⎛
⎜⎜⎜⎜⎜⎜⎝

X2

...

Xn

X1

⎞
⎟⎟⎟⎟⎟⎟⎠
φij

∈ rep(S1(Λ)),

define F−
1 : rep(S1(Λ))→ rep(Λ) satisfying

F−
1 (X) =

⎛
⎜⎜⎜⎜⎜⎜⎝

X ′
1

X2

...

Xn

⎞
⎟⎟⎟⎟⎟⎟⎠
φ′

ij

,

with X ′
1 = Coker(X1, out), where X1, out := (φj1)j : X1 →

⊕n
j=2B1j

⊗
Aj
Xj .

Denote by ψ1j the composition of the inclusion map B1j

⊗
Aj
Xj ↪→

⊕n
k=2B1k

⊗
Ak
Xk

and the projection
⊕n

k=2B1k

⊗
Ak
Xk � X ′

1. Then

φ′ij =

⎧⎨
⎩

ψ1j , if i = 1;

φij , otherwise.

For a morphism g = {gi} : X → Y in rep(S1(Λ)), F−
1 (g) = g′ = {g′i} where g′i = gi for

i = 2, . . . , n and g′1 is the unique morphism making the following diagram commutes:

X1

g1

��

X1,out��
⊕n

k=2B1k

⊗
Ak
Xk

��

⊕id⊗gk

��

Cok(X1, out)

g′1
���
�
�

�� 0

Y1

Y1,out��
⊕n

k=2B1k

⊗
Ak
Yk �� Cok(Y1, out) �� 0.
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In the same way in sequence, for any k, we can define

F+
k : rep(Sk−1Sk−2 . . . S1(Λ))→ rep(SkSk−1 . . . S1(Λ)),

F−
k : rep(SkSk−1 . . . S1(Λ))→ rep(Sk−1Sk−2 . . . S1(Λ)).

Then we denote

C+ = F+
n F

+
n−1 . . . F

+
1 : rep(Λ)→ rep(Λ) and C− = F−

1 F
−
2 . . . F−

n : rep(Λ)→ rep(Λ),

which are called the Coxeter functors on rep(Λ).

Remark 3.1 Let Q be a connected acyclic quiver. We can re-arrange the vertices of Q by
making i < j if there is a path from j to i so as to get an admissible sequence 1, 2, . . . , n with 1
as a sink vertex and n as a source vertex. Thus, the path algebra kQ can be seen as a special
case of Frobenius-type triangular matrix algebras through assuming that Ai = k for all i and
Bij is the k-linear spaces generated by all arrows from j to i. In this case, the reflection functors
and Coxeter functors defined above accords with that as the classical case given by Dlab and
Ringel in [6, 7, 18].

Proposition 3.2 For a Frobenius-type triangular matrix algebra Λ, and X ∈ rep(S1(Λ)), Y ∈
rep(Λ), there is a functorial isomorphism HomΛ(F−

1 (X), Y ) ∼= HomS1(Λ)(X,F+
1 (Y )).

Proof Consider a morphism f ∈ HomS1(Λ)(X,F+
1 (Y )). By definition, this is a collection of

Aj-module homomorphisms fj : Xj → (F+
1 (Y ))j with 1 ≤ j ≤ n satisfying certain commutative

relations. In the diagram

X1

f1

��

X1,out ��
⊕n

k=2B1k

⊗
Ak
Xk ��

⊕id⊗fk

��

Cok(X1, out)

g1

���
�
�

�� 0

0 �� Ker(Y1, in) ��
⊕n

k=2B1k

⊗
Ak
Yk

Y1,in �� Y1

its left square commutes. Observe that Y1, in ◦ (⊕id ⊗ fk) ◦ X1, out = 0, so Y1, in ◦ (⊕id ⊗ fk)
factors through the cokernel of X1, out. Then, there is a map g1 such that the right square
commutes.

Thus if we set gj := fj for 2 ≤ j ≤ n, we get a homomorphism g : F−
1 (X)→ Y corresponding

to the given f . Write π(f) = g.
Conversely, consider a homomorphism g : F−

1 (X)→ Y , in the diagram

X1

f1

���
�
�

X1,out ��
⊕n

k=2B1k

⊗
Ak
Xk

��

⊕id⊗gk

��

Cok(X1, out)

g1

��

�� 0

0 �� Ker(Y1, in) ��
⊕n

k=2B1k

⊗
Ak
Yk

Y1,in �� Y1

the right square commutes. There is a unique map f1 such that the left square commutes.
Similarly as above, let fj := gj for 2 ≤ j ≤ n. Then we get a homomorphism f : F−

1 (X)→ Y

corresponding to the given g. Write τ (g) = f .
For a morphism f ∈ HomS1(Λ)(X,F+

1 (Y )), there exists a unique π(f) makes the right
square above commutes. And for π(f), there exists a unique τπ(f) makes the left square above
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commutes. Since f makes the left square above commutes, we have τπ(f) = f . Similarly,
πτ (g) = g.

Therefore, π and τ are mutual-inverse, and we get a functorial isomorphism

HomΛ(F−
1 (X), Y ) ∼= HomS1(Λ)(X,F+

1 (Y )).

Lemma 3.3 For a Frobenius-type triangular matrix algebra Λ, there is a short exact sequence
of Λ-Λ-bimodules

P• : 0→
⊕

1≤i<j≤n
Λei

⊗
Ai

Bij
⊗
Aj

ejΛ
d→

n⊕
k=1

Λek
⊗
Ak

ekΛ
mult→ Λ→ 0,

where d satisfies d(p ⊗ b ⊗ q) := pb ⊗ q − p ⊗ bq and the morphism “mult” is given by the
multiplication of Λ.

Proof Trivially, d is injective and mult is surjective. Also, Im(d) = Ker(mult).

Corollary 3.4 For a Frobenius-type triangular matrix algebra Λ and X ∈ repl.f.(Λ), there is
a projective resolution of X:

P•
⊗
Λ

X : 0→
⊕

1≤i<j≤n
Pi

⊗
Ai

Bij
⊗
Aj

Xj
d⊗X→

n⊕
k=1

Pk
⊗
Ak

Xk
mult→ X → 0

with (d⊗X)(p⊗ b⊗ x) = pb⊗ x− p⊗ φij(b⊗ x).
Proof Here Pi is just defined in (2.1). Then, P•

⊗
ΛX is always exact. Since X is locally

free, ekΛ
⊗

ΛX = ekX are free Ak-modules. Thus P•
⊗

ΛX is a projective resolution.
Following [9, 10], we define a functor T of rep(Λ) satisfying that

TX =

⎛
⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

Xn

⎞
⎟⎟⎟⎟⎟⎟⎠
ψij

for any X =

⎛
⎜⎜⎜⎜⎜⎜⎝

X1

X2

...

Xn

⎞
⎟⎟⎟⎟⎟⎟⎠
φij

∈ rep(Λ),

where ψij(b ⊗ x) = −φij(b ⊗ x) for b ∈ Bij , x ∈ Xj , 1 ≤ i < j ≤ n. Obviously, T is an
automorphism functor.

Theorem 3.5 For a Frobenius-type triangular matrix algebra Λ and each X ∈ repl.f.(Λ),
there are functorial isomorphisms: TC+(X) ∼= τ (X) and TC−(X) ∼= τ−(X).

This theorem and its preparation above follow the conclusion and method of [9, 10]. But,
here Λ is a Frobenius-type triangular matrix algebra, which includes the classes of algebras in
[9, 10]. We need to overcome the different key point such as the different expression form of
algebras by using the dual basis in Lemma 2.4.

Firstly, from Λ, we construct a new Frobenius-type triangular matrix algebra:

Λ̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ã1 Ã1,2 . . . Ã1,2n

0 Ã2 . . . Ã2,2n

...
...

. . .
...

0 0 · · · Ã2n

⎞
⎟⎟⎟⎟⎟⎟⎠
,
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where

Ãi =

⎧⎨
⎩

Ai, if 1 ≤ i ≤ n,
Ai−n, if n+ 1 ≤ i ≤ 2n,

and

B̃ij =

⎧⎪⎪⎨
⎪⎪⎩

Bij , if 1 ≤ i < j ≤ n or n+ 1 ≤ i < j ≤ 2n,

HomAi
(Bj−n,i, Ai), if 1 ≤ j − n < i ≤ n,

0, otherwise,

and Ãij =
⊕j−i−1

l=0

⊕
i<k1<k2<···<kl<j

B̃ik1

⊗
Ãk1

B̃k1k2

⊗ · · ·⊗Ãkl
B̃klj for 1 ≤ i < j ≤ 2n.

For any non-negative integer t, denote

1(t) :=
t+n∑
i=t+1

ei, 1(t)
0 :=

t+n∑
i=1

ei

and the corresponding subalgebras

Λ(t) := 1(t)Λ̃1(t), Λ̃(t) := 1(t)
0 Λ̃1(t)

0

for 0 ≤ t ≤ n. It is easy to see that Λ̃(0) ∼= Λ(0) ∼= Λ(n) ∼= Λ, Λ̃(n) ∼= Λ̃. And Λ(t) ∼= St · · ·S1(Λ)
for 1 ≤ t ≤ n.

Let

X =

⎛
⎜⎜⎜⎝

X1

...

X2n

⎞
⎟⎟⎟⎠
φij

∈ rep(Λ̃)

satisfy the following condition:

Xn+i
X̃i, out−→

n+i−1⊕
k=i+1

Bik
⊗
Ak

Xk
X̃i, in−→ Xi such that X̃i, in ◦ X̃i, out = 0 for 1 ≤ i ≤ n. (3.1)

We define the restriction functors:

Res(t,m) : rep(Λ̃(m))→ rep(Λ(t)), X �→ 1(t)Λ̃(m) ⊗Λ̃(m) X;

Res(t,m) : rep(Λ̃(m))→ rep(Λ̃(t)), X �→ 1(t)
0 Λ̃(m) ⊗Λ̃(m) X for 1 ≤ t ≤ m ≤ n.

Obviously, Res(t,m) has a right adjoint Res∗(t,m)(−) = HomΛ̃(t)(1
(t)
0 Λ̃(m),−).

The following lemma is a generalization of [10, Lemma 10.2]. Their proofs are identical.

Lemma 3.6 With the above notations, there is a functorial isomorphisms

Res(i,i) ◦ Res∗(i−1,i)(X) ∼= F+
i ◦ Res(i−1,i−1)(X)

for X ∈ rep(Λ̃(i−1)) which satisfies (3.1) for all 1 ≤ i ≤ n.
By Lemma 3.6, we obtain that for any X ∈ rep(Λ) (regarded as a representation of

rep(Λ̃(0))), we have

HomΛ(1(0)Λ̃1(n), X) = Res(n,n) ◦Res∗(n−1,n) ◦ · · · ◦ Res∗(0,1)(X)

= F+
n ◦ Resn−1 ◦ Res∗(n−2,n−1) ◦ · · · ◦Res∗(0,1)(X)

= · · ·
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= F+
n ◦ F+

n−1 ◦ · · ·F+
1 ◦ Res0(X)

= C+(X).

Denote

Res0 = Res(0,1) ◦ Res(1,2) ◦ · · · ◦ Res(n−1,n), Res∗0 = Res∗(n−1,n) ◦ · · · ◦ Res∗(1,2) ◦ Res∗(0,1).

It is easy to see that Res∗0 is right adjoint of Res0.
Now, following [9, 10], we construct another functor R∗

0 : rep(Λ(0)) → rep(Λ̃), and then
show that R∗

0 is right adjoint to Res0.
Let X ∈ rep(Λ(0)). We first define X̃ ∈ rep(Λ̃) by requiring that

Res(0,n)(X̃) = X,

Res(n,n)(X̃) =
⊕

1≤k<t≤n
HomAt

(
B̃t,n+k

⊗
Ak

en+kΛ(n), Xt

)
.

For 1 ≤ i < j ≤ n, it remains to define the structure map of X̃ as Aj-module morphisms:

φj,n+i : B̃j,n+i

⊗
Ai

X̃n+i → X̃j = Xj ,

which is given by the following composition:

B̃j,n+i

⊗
Ai

( ⊕
1≤k<t≤n

HomAt

(
B̃t,n+k

⊗
AK

en+kΛ(n)en+i, Xt

))

proj.−→ B̃j,n+i

⊗
Ai

HomAj

(
B̃j,n+i

⊗
Ai

en+iΛ(n)en+i, Xj

)

= B̃j,n+i

⊗
Ai

HomAj
(B̃j,n+i, Xj)

eval.−→ Xj ,

where the first map is the projection on the direct summand indexed by i, j and the second
map is the evaluation b⊗ ϕ = ϕ(b).

Secondly, we define a Λ̃-subrepresentation R∗
0(X) of X̃ as follows. We set

(R∗
0(X))i = X̃i = Xi, 1 ≤ i ≤ n,

and define R∗
0(X)n+i as the subspace of X̃n+i generated by all of

(μik,t)1≤k<t≤n ∈
⊕

1≤k<t≤n
HomAt

(
B̃t,n+k

⊗
Ak

en+kΛ(n)en+i, Xt

)

such that, for all 1 ≤ t ≤ n and λ ∈ en+tΛ(n)en+i, the following relation holds:
∑

1≤k<t,�∈Lkt

μik,t(�
∗ ⊗ �λ) +

∑
t<m≤n,r∈Rtm

φtm(r ⊗ μit,m(r∗ ⊗ λ)) = 0. (3.2)

For μj = (μjk,t)1≤k<t≤n ∈ (R∗
0(X))n+j, 1 ≤ j ≤ n, we deduce from the definitions that

X̃j, in ◦ X̃j, out(μj)

= X̃j, in

( ∑
1≤i<j,�∈Lij

(�∗ ⊗ φn+i,n+j(�⊗ μj)) +
∑

j<k≤n,r∈Rij

(r ⊗ φk,n+j(r∗ ⊗ μj))
)
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=
∑

1≤i<j,�∈Lij

φj,n+i(�∗ ⊗ φn+i,n+j(�⊗ μj)) +
∑

j<k≤n,r∈Rij

φj,k(r ⊗ φk,n+j(r∗ ⊗ μj))

=
∑

1≤i<j,�∈Lij

μji,j(�
∗ ⊗ �⊗ en+j) +

∑
j<k≤n,r∈Rij

φj,k(r ⊗ μjj,k(r∗ ⊗ en+j)) = 0.

So, R∗
0(X) satisfies (3.1).

Thus, we have obtained a functor R∗
0 : rep(Λ(0))→ rep(Λ̃); X �→ R∗

0(X). We have that R∗
0

is isomorphic to Res∗0. This is according to the uniqueness of adjoint functors up to natural
equivalence and the following lemma.

Lemma 3.7 R∗
0 is right adjoint to Res0.

It is a generalization of [10, Lemma 10.3]. Their proofs are identical.

Lemma 3.8 Let Ai be a Frobenius algebra, U and V be finitely generated free Ai-modules.
Then we have an isomorphism DHomAi

(U, V ) ∼= HomAi
(V, U).

Proof Since Ai is a Frobenius algebra, DAi ∼= Ai. Let U =
⊕n

j=1Ai and V =
⊕m

t=1Ai. Then
DHomAi

(U, V ) ∼= ⊕n
j=1

⊕m
t=1DHomAi

(Ai, Ai) ∼=
⊕n

j=1

⊕m
t=1 HomAi

(Ai, Ai) ∼= HomAi
(V, U).

Proposition 3.9 For a Frobenius-type triangular matrix algebra Λ and X ∈ repl.f.(Λ), there
is an isomorphism τ (TM) ∼= Res(n,n) ◦R∗

0(X), where Λ is identified with Λ(0) and Λ(n) by their
definitions.

Proof The proof is similar to [10, Proposition 10.4]. The only illustration we need to add
is the fact that for a locally free Λ-module X, we have DHomAi

(eiΛ, Xi) ∼= HomAi
(Xi, eiΛ).

This follows from Lemma 3.8.

Proof of Theorem 3.5 By Proposition 3.9, if X ∈ repl.f.(Λ), we have

TC+(X) ∼= Res(n,n) ◦ Res∗0(TX) ∼= Res(n,n) ◦R∗
0(TX) ∼= τ (T 2X) ∼= τ (X).

Let X,Y ∈ repl.f.(Λ). Then we have

HomΛ(τ−(X), Y ) ∼= HomΛ(X, τ (Y ))
∼= HomΛ(X,C+(TY ))
∼= HomΛ(C−(TX), Y ).

The first isomorphism is obtained by Corollary 2.8 and the third isomorphism follows from
Proposition 3.2.

There exists a functorial isomorphism of right Λ-modules DX ∼= HomΛ(X,DΛ) for all
Λ-modules X. Since DΛ ∈ repl.f.(Λ), taking Y = DΛ we get τ−(X) ∼= C−(TX).

Recall that the category of Gorenstein-projective modules of Λ is

GP(Λ) = {X ∈ rep(Λ)|Ext1Λ(X,Λ)} = 0.

As an immediate consequence of Theorem 3.5 and the definition of C+(−), we get the following
result.

Corollary 3.10 For a Frobenius-type triangular matrix algebra Λ and X ∈ repl.f.(Λ), the
following are equivalent :

(i) X ∈ GP(Λ);
(ii) C+(X) = 0;
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(iii) Xi, in is injective for all 1 ≤ i ≤ n.
This result has been proved in a more general case in [15].

4 Root Systems in Case of Dynkin Type

For a Frobenius-type triangular matrix algebra Λ, let C = (cij) ∈Mn(Z), where

cij =

⎧⎪⎪⎨
⎪⎪⎩

2, if i = j,

−rankAi
(Bij), if i < j,

−rankAi
(Bji), if i > j.

Denote ci = dimk(Ai). Then it is easy to get that cicij = cjcji = −dimk(Bij), which means
that C is a symmetrizable Cartan matrix.

Define a quadratic form qC : Z
n → Z of C satisfying for x = (x1, . . . , xn)t ∈ Z

n,

qC(x) :=
n∑
i=1

cix
2
i −

∑
i<j

ci|cij |xixj . (4.1)

The Cartan matrix C is said to be of Dynkin type (resp. Euclidean type) if qC is positive
define (resp. positive semidefinite).

We define the valued quiver Γ(Λ) via the Cartan matrix C whose vertices are 1, . . . , n and
whose arrow i ← j from j to i exists for each pair (i, j) with i < j if cij < 0, with valuation
(−cji,−cij) on the arrow i← j. It is well known, see [12, Theorem 4.8], that

Fact C is of Dynkin type if and only if Γ(Λ) is a disjoint union of quivers whose underlying
valued graph is of Dynkin type.

The standard basis vectors of Z
n, denoted as α1, . . . , αn, are the positive simple roots of

the Kac–Moody algebra g(C) associated with C, that is, of the quadratic form qC(x). For
1 ≤ i, j ≤ n, define the reflections si satisfying that si(αj) := αj − cijαi.

The Weyl group W (C) of g(C) is the subgroup of Aut(Zn) generated by s1, . . . , sn. It is
well known that W (C) is finite if and only if C is of Dynkin type.

Let Δ(C) be the set of roots of C and Δre(C) :=
⋃n
i=1W (αi) be the set of real roots of C.

Let Δ+(C) := Δ(C) ∩ N
n and Δ+

re(C) := Δre(C) ∩ N
n. The following are equivalent:

(i) C is of Dynkin type;
(ii) Δ(C) is finite;
(iii) Δre(C) = Δ(C).
Let

βk=

⎧⎨
⎩
α1, if k = 1,

s1s2 · · · sk−1(αk), if 2 ≤ k ≤ n
and γk=

⎧⎨
⎩
snsn−1 · · · sk+1(αk), if 1 ≤ k ≤ n− 1,

αn, if k = n.

Let c+ = snsn−1 · · · s1 : Z
n → Z

n and c− = s1s2 · · · sn : Z
n → Z

n be the Coxeter transfor-
mations. For k ∈ Z, set

ck :=

⎧⎪⎪⎨
⎪⎪⎩

(c+)k, if k > 0,

(c−)−k, if k < 0,

id, if k = 0.
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It follows that c+(βk) = −γk.
The following three lemmas are well known, for example see [3, Chapter VII].

Lemma 4.1 Suppose that C is not of Dynkin type. Then the element c−r(βi) and cs(γj) with
r, s ≥ 0 and 1 ≤ i, j ≤ n are pairwise different elements in Δ+

re(C).

Let C be of Dynkin type. Let pi ≥ 1 be minimal with c−pi(βi) /∈ N
n for 1 ≤ i ≤ n, and let

qj ≥ 1 be minimal with cqj (γj) /∈ N
n for 1 ≤ j ≤ n. The elements c−r(βi) with 1 ≤ i ≤ n and

0 ≤ r ≤ pi−1 are pairwise different, and the elements cs(γj) with 1 ≤ j ≤ n and 0 ≤ s ≤ qj −1
are pairwise different.

Lemma 4.2 Assume that C is of Dynkin type. Then Δ+(C) = {c−r(βi)|1 ≤ i ≤ n, 0 ≤ r ≤
pi − 1} = {cs(γj)|1 ≤ j ≤ n, 0 ≤ s ≤ qj − 1}.
Lemma 4.3 Assume that C is of Dynkin type. For every positive vector x, there exist s ≥ 0
such that csx > 0 but cs+1x ≯ 0, and t ≥ 0 such that c−tx > 0 but c−t−1x ≯ 0.

Definition 4.4 For a Frobenius-type triangular matrix algebra Λ, let X be a locally free Λ-
module. Let ri be the rank of the free Ai-module Xi. Following [10], we denote

rank(X) := (r1, . . . , rn).

Lemma 4.5 rank(Pk) = βk, rank(Ik) = γk.

This lemma is a generalization of [10, Lemmas 3.2 and 3.3]. Its proof is similar to that of
[10, Lemma 3.2], using the resolution (2.2) and (2.4).

Definition 4.6 For a Frobenius-type triangular matrix algebra Λ, following [10], a Λ-module
X is called τ -locally free if τk(X) is locally free for all k ∈ Z. Moreover, X is called indecom-
posable τ -locally free if X cannot be written as a sum of two proper τ -locally free Λ-modules.

The following proposition is a generalization of [10, Propositions 9.6 and 11.4].

Proposition 4.7 For a Frobenius-type triangular matrix algebra Λ, let X be a rigid and locally
free Λ-module. Then

(i) F+
1 (X) is a rigid and locally free S1(Λ)-module and F−

n (X) is a rigid and locally free
Sn−1 · · ·S1(Λ)-module;

(ii) X is τ -locally free and τk(X) is rigid for all k ∈ Z.

Proof Its proof is identical to the proof of [10, Propositions 9.6 and 11.4]. The only illustration
we need to add is the fact that for a locally free Λ-moduleX and its minimal projective resolution
of the form 0 → P ′′ → P ′ → X → 0, we have that P ′ and P ′′ are two direct sums of Pi for
1 ≤ i ≤ n. The conclusion follows from Proposition 2.6, Corollary 2.8 and the horseshoe lemma.

Lemma 4.8 For a Frobenius-type triangular matrix algebra Λ, let X be an indecomposable
τ -locally free Λ-module. Then X is isomorphic to E1 if and only if F+

1 (X) = 0 (or equivalently,
s1(rank(X)) ≯ 0). If X � E1, then F+

1 (X) is an indecomposable τ -locally free S1(Λ)-module
and rank(F+

1 (X)) = s1(rank(X)).

Proof Since X is indecomposable τ -locally free, we obtain that X1, in is surjective. If X � E1,

we have an exact sequence 0 �� Ker(X1, in) ��
⊕n

k=2B1k

⊗
Ak
Xk �� X1

�� 0 . So

(rank(F+
1 (X)))1 =

n∑
k=2

|c1k|ak − a1 = (s1(rank(X)))1.
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If X ∼= E1, we have F+
1 (X) = 0 by the definition of F+

1 , and s1(rank(E1))1 = −1.
We need the following two propositions, which are generalizations of [10, Propositions 11.5

and 11.6] respectively. Their proofs are similar.

Proposition 4.9 For a Frobenius-type triangular matrix algebra Λ and an indecomposable
τ -locally free Λ-module X, the following statements hold :

(i) If τk(X) �= 0 for some k ∈ Z, then rank(τk(X)) = ck(rank(X));
(ii) If τk(X) �= 0 for some k ∈ Z and rank(X) is contained in Δ+(C), then rank(τk(X)) is

in Δ+(C).

Proposition 4.10 For a Frobenius-type triangular matrix algebra Λ and a Λ-module X, if
either X ∼= τ−k(Pi) or X ∼= τk(Ii) for some k ≥ 0 and 1 ≤ i ≤ n, the following statements
hold :

(i) X is τ -locally free and rigid;
(ii) rank(X) ∈ Δ+

re(C);
(iii) If either Y ∼= τ−m(Pj) or Y ∼= τm(Ij) for some m ≥ 0 and 1 ≤ j ≤ n with rank(X) =

rank(Y ), then X ∼= Y.

Theorem 4.11 For a Frobenius-type triangular matrix algebra Λ, the following statements
hold :

(a) The number of isomorphism classes of indecomposable τ -locally free Λ-modules is finite
if and only if C is of Dynkin type.

(b) If C is of Dynkin type, then the mapping rank : X �→ rank(X) induces a bijection
between the set of isomorphism classes of indecomposable τ -locally free Λ-modules and the set
of positive roots of the quadratic form qC(x).

Proof In the case that C is not of Dynkin type, by Lemmas 4.1, 4.5 and Proposition 4.9, we
know there are infinitely many isomorphism classes of indecomposable τ -locally free Λ-modules.

In the case that C is of Dynkin type, firstly, we need to prove that rank(X) ∈ Δ+(C) for
any indecomposable τ -locally free Λ-module X. We denote rank(X) = x. By Lemma 4.3, there
exists a least s such that csx > 0 but cs+1x ≯ 0. Because c+ = sn · · · s1, there also exists a
least i such that 0 ≤ i ≤ n− 1, si · · · s1ctx > 0, but si+1 · · · s1ctx ≯ 0.

We know that X ′ = F+
i · · ·F+

1 C
+tX is indecomposable τ -locally free by Lemma 4.8 and

that
rank(F+

i · · ·F+
1 C

+tX) = si · · · s1ctx.
Because si+1(rank(X ′)) ≯ 0, there is an isomorphismX ′ ∼= Ei+1 by Lemma 4.8. So si · · · s1ctx=
αi+1, and according to Lemma 4.2, the vector x = c−ts1 · · · siαi+1 = c−tβi+1 is a positive root
of qC(x) and rank(−) is surjective.

If X and Y are indecomposable τ -locally free Λ-modules such that rank(X) = rank(Y ),
then we have, as earlier

F+
i · · ·F+

1 C
+tX ∼= Ei+1

∼= F+
i · · ·F+

1 C
+tY,

so that
X ∼= C−tF−

1 · · ·F−
i Ei+1

∼= Y.

Thus rank(−) is an injective mapping.
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Corollary 4.12 For the path algebra Λ = AQ of an acyclic quiver Q over a Frobenius algebra
A, the following statements hold :

(a) The number of isomorphism classes of indecomposable τ -locally free Λ-modules is finite
if and only if Q is of Dynkin type;

(b) In the case that Q is of Dynkin type, the mapping rank : X �→ rank(X) induces a
bijection between the set of isomorphism classes of indecomposable τ -locally free Λ-modules and
the set of positive roots of the quadratic form qQ(x) =

∑
i∈Q0

x2
i −

∑
α∈Q1

xs(α)xt(α), where
x = (x1, . . . , xn)t ∈ Z

n.

Proof By Remark 1.2 (iii), Λ = AQ is a Frobenius-type triangular matrix algebra via taking
all Ai = A and Bij =

⊕#{α:j→i}
s=1 A. So, ci = cj = dimkA, and then

−cij = −cji = dimkBij/dimkA = #{α : j → i},
which means that the Cartan matrix C is symmetric and in its corresponding valued quiver
Γ(Λ), the valuation (−cij ,−cji) is given with the number of arrows from j to i in Q. By the
definitions of the quadratic forms, we have

qC(x) =
n∑
i=1

cix
2
i −

∑
i<j

ci|cij |xixj = dimkA

( n∑
i=1

x2
i −

∑
i<j

|cij |xixj
)

= qQ(x)dimkA.

Hence, the positivity definite property of qC and qQ are the same with each other. Thus, the
statements (a) and (b) follow respectively from Theorem 4.11 (a) and (b).

Recall in [14] for a generalized path algebra Λ = k(Q,A), there is a corresponding valued
quiver Υ(Λ). The set of vertices Υ(Λ)0 = Q0. If there are arrows from j to i in Q, we give an
arrow i← j in Υ(Λ), with valuation (dji, dij) where dji = |Qij |dimkAi and dij = |Qij |dimkAj .
Here |Qij | means the number of arrows.

In the case when Q is acyclic, in order to realize k(Q,A) as a triangular matrix algebra, we
re-arrange the order of vertices in Q via assuming i < j if there exists a path from j to i. Let
Bij = AiQijAj for Qij the set of arrows from j to i in Q and then define Aij as in Definition 1.1
and put Ai at the (i, i)-array. Then we obtain the triangular matrix algebra which is equal to
Λ = k(Q,A).

Moreover, −cij = rankAi
(Bij) = |Qij |dimkAj = dij . Thus, it follows that the valued quiver

Υ(Λ) is coincident with Γ(Λ).
Define a quadratic form qk(Q,A) : Z

n → Z of k(Q,A) satisfying for x = (x1, . . . , xn)t ∈ Z
n,

qk(Q,A)(x) =
∑
i∈Q0

dix
2
i −

∑
α∈Q1

ds(α)ds(α)t(α)xs(α)xt(α). (4.2)

Comparing this quadratic form with that in (4.1), it is easy to see that qk(Q,A) is the special
case of qC for Λ = k(Q,A).

Corollary 4.13 For an acyclic quiver Q and its generalized path algebra Λ = k(Q,A) endowed
by Frobenius algebras Ai at all vertices i ∈ Q0, the following statements hold :

(a) The number of isomorphism classes of indecomposable τ -locally free Λ-modules is finite
if and only if Υ(Λ) is of Dynkin type.

(b) If Ω(Λ) is of Dynkin type, then the mapping rank : X �→ rank(X) induces a bijec-
tion between the set of isomorphism classes of indecomposable τ -locally free Λ-modules and
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the set of positive roots of the qk(Q,A)(x) =
∑

i∈Q0
dix

2
i −

∑
α∈Q1

ds(α)dt(α)xs(α)xt(α), where
x = (x1, . . . , xn)t ∈ Z

n and di = dim(Ai).

Proof They follow directly from Υ(Λ) = Γ(Λ), the Fact, Theorem 4.11 and that qk(Q,A) = qC

for Λ = k(Q,A).

5 Analog of APR-tilting Module for Λ

The APR-tilting modules were introduced by Auslander et al. in [4] to interpret BGP-reflection
functors as homomorphism functors of certain tilting modules. Also, it was the beginning of
tilting theory.

For a Frobenius-type triangular matrix algebra Λ, for the case i = 1, we define T1 :=
Λ/P1

⊕
τ−(P1) and call T1 a generalized APR-tilting module of Λ. This case follows from the

fact that i = 1 is a “sink vertex” so as to gain the reflection functor.

Proposition 5.1 For a Frobenius-type triangular matrix algebra Λ, T1 is a tilting Λ-module.

Proof Since P1 is a rigid and locally free, τ−(P1) is rigid and locally free by Proposi-
tion 4.7. So T1 is locally free. Then by Corollary 2.8, proj.dimT1 ≤ 1. Thus, Ext1Λ(T1, T1) ∼=
DHomΛ(T1, τ (T1)) = DHomΛ(T1, P1) = 0. Because Λ is connected, P1 has no injective sum-
mand. Since τ− takes non-injective indecomposable modules to non-projective indecomposable
modules, T1 := Λ/P1

⊕
τ−(P1) has the same number of summands as primitive idempotents

of Λ. So T1 is a tilting Λ-module.

Remark 5.2 A similar analog of generalized APR-tilting modules was introduced in [16] for
a class of triangular matrix alegbras.

Lemma 5.3 For a Frobenius-type triangular matrix algebra Λ, there is an algebra isomorphism
EndΛ(T1) ∼= S1(Λ).

Proof Clearly, when 2 ≤ i, j ≤ n,

e′iEndΛ(T1)e′j ∼= HomEnd(T1)(EndΛ(T1)e′i,EndΛ(T1)e′j)
∼= HomEnd(T1)(Hom(T1, Pi),Hom(T1, Pj))
∼= HomΛ(Pi, Pj)
∼= eiΛej .

When i = 1, j = 1, e′iEndΛ(T1)e′j ∼= HomΛ(τ−(P1), τ−(P1)) ∼= HomΛ(P1, P1) ∼= A1. When
i = 1, j > 1, e′iEndΛ(T1)e′j ∼= HomΛ(τ−(P1), Pj) = 0. When j = 1, i > 1, e′iEndΛ(T1)e′j ∼=
HomΛ(Pi, τ−(P1)).

Since there is a minimal injective resolution:

0→ P1 → I1 →
n⊕
j=2

Ij
⊗
Aj

Bj1 → 0,

then we have

0→ ν−(P1)→ P1 →
n⊕
j=2

Pj ⊗Aj
Bj1 → τ−(P1)→ 0.

Apply functor HomΛ(Pi,−) for i > 1.
Since HomΛ(Pi, P1) = 0, HomΛ(Pi,

⊕n
k=2 Pk

⊗
Ak
Bk1)→ HomΛ(Pi, τ−(P1)) is injective.
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Since Pi is projective Λ-module, HomΛ(Pi,
⊕n

k=2 Pk
⊗

Ak
Bk1)→ HomΛ(Pi, τ−(P1)) is sur-

jective.
So, HomΛ(Pi,

⊕n
k=2 Pk

⊗
Ak
Bk1) ∼= HomΛ(Pi, τ−(P1)).

Then, e′iEndΛ(T1)e′1 ∼= HomΛ(Pi,
⊕n

k=2 Pk
⊗

Ak
Bk1) ∼=

⊕n
k=2 e1Λek

⊗
Ak
Bk1 ∼= Ai1.

At last, EndΛ(T1) ∼= S1(Λ).
Using Proposition 5.1 and Lemma 5.3, we can prove the following theorem.

Theorem 5.4 For a Frobenius-type triangular matrix algebra Λ, there is a functorial isomor-
phism

F+
1 (−) ∼= HomΛ(T1,−) : rep(Λ)→ rep(S1(Λ)).

Proof We know that P1
∼= E1.

We have ν−(D(e1Λ)) = HomΛ(D(D(e1Λ)),Λ) ∼= HomΛ(e1Λ,Λ) ∼= Λe1 = P1.
Also

ν−(D(B1j ⊗Aj
ejΛ)) = HomΛ(B1j ⊗Aj

ejΛ,Λ)
∼= HomAj

(B1j ,HomΛ(ejΛ,Λ))
∼= HomAj

(Bij ,Λej)
∼= Λej ⊗Aj

HomAj
(B1j , Aj)

∼= Pj ⊗Aj
Bji. (5.1)

Since Λej is a finitely generated projective right Aj-module, the isomorphism in (5.1) comes
from [2]. So applying the quasi-inverse Nakayama functor ν− to (2.4), we get an exact sequence

0→ ν−(E1)→ P1 → ⊕nj=2Pj ⊗Aj
Bj1 → τ−(P1)→ 0, (5.2)

where θ1j : P1 → Pj
⊗

Aj
Bj1 is given by λei �→

∑
r∈Rij

λr ⊗ r∗. We have isomorphisms
HomΛ(Pj

⊗
Aj
Bj1, X)∼= HomΛ(HomAj

(Bij ,Λej), X)∼=B1j

⊗
Aj

HomΛ(Pj , X)∼=B1j

⊗
Aj
Xj .

The isomorphism HomΛ(Pj
⊗

Aj
Bj1, X)→ B1j

⊗
Aj
Xj is given by f �→∑

r∈Rij
λr⊗f(ej⊗r∗),

and isomorphism HomΛ(P1, X)→ X1 is given by g �→ g(e1). We get a commutative diagram

HomΛ(Pj
⊗

Aj
Bj1, X)

HomΛ(θ1j ,X)−−−−−−−−−→ HomΛ(P1, X)

ηX
1j

⏐⏐	 ηX
i

⏐⏐	
B1j

⊗
Aj
Xj

ϕ1j−−−−→ X1.

This follows from that, for f ∈ HomΛ(Pj
⊗

Aj
Bj1, X) and r ∈ R1j , we have

f(r ⊗ r∗) = ϕ1j(r ⊗ f(ej ⊗ r∗).
Applying functor HomΛ(−, X) to (5.2) for X ∈ Λ-mod, we obtain a commutative diagram:

0 −−−−→ HomΛ(τ−(P1), X) −−−−→ ⊕n
j=2 HomΛ(Pj

⊗
Aj
Bj1, X) −−−−→ HomΛ(P1, X)⏐⏐	

⏐⏐	
⏐⏐	

⏐⏐	
0 −−−−→ Ker(X1, in) −−−−→ ⊕n

j=2B1j

⊗
Aj
Xj

X1,in−−−−→ X1.

Since the last two terms are isomorphic, we obtain an isomorphism HomΛ(τ−(P1), X) ∼=
Ker(M1, in). Together with Lemma 5.3, we get the functorial isomorphism F+

1 (−) ∼= HomΛ

(T1,−).
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This theorem is the main result in this section, whose corresponding analog in [10] is [10,
Theorem 9.7]. But the method for proving in [10] is incomplete for our case, the Frobenius-type
triangular matrix algebra Λ.

Besides Corollary 4.13, the main results in this paper, including those in this section, are
interesting to be restricted two special cases, that is, Λ is either a generalized path algebra
Λ = k(Q,A) endowed by Frobenius algebras Ai at each vertex i ∈ Q0 or a path algebra
Λ = AQ of quiver Q over a Frobenius algebra A.
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