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Abstract In this paper, we prove that for − 1
2
≤ β ≤ 0, suppose M is an invariant subspaces of the

Hardy–Sobolev spaces H2
β(D) for T β

z , then M � zM is a generating wandering subspace of M , that is,

M = [M � zM ]
T

β
z

. Moreover, any non-trivial invariant subspace M of H2
β(D) is also generated by the

quasi-wandering subspace PMT β
z M⊥, that is, M = [PMT β

z M⊥]
T

β
z

.
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1 Introduction

Let D be the unit disk in complex domain C, and T be its boundary. We denote the Lebesgue
measure on T by dθ. For β ∈ R, the Hardy–Sobolev space H2

β(D) consists of analytic functions
f in D so that Rβf ∈ H2(D), where f(z) =

∑∞
k=0 akz

k is the Taylor expansion of f and
Rβf =

∑∞
k=0(1 + k)βakz

k.
We define the norm on H2

β(D) as

‖f‖β = ‖Rβf‖H2(D).

In fact, H2
β(D) is a Hilbert space with the inner product defined as

〈f, g〉β =
1
2π

∫ 2π

0

Rβ(f)Rβ(g)dθ, ∀f, g ∈ H2
β(D).

Definition 1.1 For ϕ ∈ H2
β(D), denote by T β

ϕ the multiplier with symbol ϕ on H2
β(D), that is

T β
ϕ f = ϕf for any f ∈ H2

β(D). Set

Mβ = {ϕ ∈ H2
β(D) | T β

ϕ is bounded on H2
β(D)}.

It is not difficult to see that Mβ is an algebra and z ∈ Mβ.
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The Hardy–Sobolev space is a general analytic function space which contains many classical
function spaces. For example, it is easy to check that H2

1
2

= D, the Dirichlet space; H2
0 = H2,

the Hardy space; H2
− 1

2
= L2

a, the Bergman space. This means that the Hardy–Sobolev space
has very complex constructions. In recent years, a series of papers and books discussed these
spaces and the integral operators on these spaces (see [4, 5, 7, 14]).

For a given operator T on a separable Hilbert space H, a closed subspace M of H is
called an invariant subspace for T if TM ⊂ M . For an invariant subspace M of H for T , the
space M � TM is called the wandering subspace and PMTM⊥ the quasi-wandering subspace
respectively for M , where and in what follows PM denotes the projection onto a closed subspace
M and M⊥ = H �M , TM⊥ = {Tx : x ∈M⊥}.

For a subset E of H, we shall denote by [E]T the smallest invariant subspace of H for T
containing E. In other words, [E]T is the norm-closed linear span of functions of the form T kψ

for ψ ∈ E and k = 0, 1, . . . .
We say that the Beurling type theorem holds for T if [M � TM ]T = M for all invariant

subspaces M of H. On the Hardy space H2(D), the well known Beurling theorem in [3] says
that for all invariant subspaces M of the unilateral shift Tz, their wandering subspaces have
dimension 1, and the Beurling type theorem holds for Tz. On the other hand, on the Bergman
space L2

a(D), the situation of the Bergman shift B is a little bit different. There are studies
of the dimension of wandering subspaces of invariant subspaces of B, and it is known that the
dimension ranges from 1 to ∞ , see [2, 8, 9]. In 1996, Aleman et al. [1] gave a big progress in
the study of invariant subspaces of B. They proved the Beurling type theorem for the Bergman
shift B. This result reveals the inside of the structure of invariant subspaces of the Bergman
space and becomes a fundamental theorem in the function theory on L2

a(D). Later, different
proofs of the Beurling type theorem are given in [13, 15, 16]. In [15], Shimorin proved the
following theorem.

Theorem 1.2 (Shimorin’s theorem) Let T be a bounded linear operator on a Hilbert space
H. If T satisfies the following conditions

(a) ‖Tx+ y‖2 ≤ 2(‖x‖2 + ‖Ty‖2), ∀x, y ∈ H.

(b)
⋂∞

n=0 T
nH = {0}.

Then H � TH is a generating wandering subspace for T , that is,

H = [H � TH]T .

If T satisfies conditions (a) and (b), then T |M : M → M also satisfies conditions (a) and
(b). Hence by Shimorin’s theorem, the Beurling type theorem holds for T . As an application of
this theorem, Shimorin gave a simpler proof of the Aleman, Richter, and Sundberg’s theorem.
In [16], Sun and Zheng gave another proof of this theorem. Their idea was to lift up the
Bergman shift as the compression of a commuting pair of isometries on the subspace of the
Hardy space over the bidisk. Sun and Zheng’s idea has two aspects. One is to show some
identities in the Bergman space. Another one is a technique how to prove the Beurling type
theorem.

Recently, Izuchi et al. [10] proved the following theorem.

Theorem 1.3 Let T be a bounded linear operator on a Hilbert space H. If T satisfies the



1686 Xiao J. S. and Cao G. F.

following conditions
(1) ‖Tx‖2 + ‖T ∗2Tx‖2 ≤ 2‖T ∗Tx‖2, ∀x ∈ H.

(2) T is bounded below, that is, there is c > 0 satisfying ‖Tx‖ ≥ c‖x‖ for every x ∈ H.
(3) ‖T ∗kx‖ → 0 as k → ∞ for every x ∈ H.
Then H � TH is a generating wandering subspace for T , that is,

H = [H � TH]T .

In [10], it is proved that conditions (1), (2), and (3) in Theorem 2.1 are equivalent to Shi-
morin’s conditions (a) and (b). As application of Theorem 2.1, Izuchi et al. gave an elementary
proof of the Aleman, Richter and Sundberg’s theorem using some basic function theory in L2

a(D)
and elementary techniques in functional analysis.

In this paper, we study wandering subspaces and quasi-wandering subspaces of the Hardy–
Sobolev spaces H2

β(D).

2 The Wandering Subspaces of Hardy–Sobolev Spaces

In this section, the following theorem is our main result.

Theorem 2.1 If −1
2 ≤ β ≤ 0, and M is an invariant subspaces of the Hardy–Sobolev spaces

H2
β(D) for T β

z , then M � zM is a generating wandering subspace of M , that is,

M = [M � zM ]T β
z
.

In order to prove Theorem 2.1, we need some identities in the H2
β(D).

Suppose f ∈ H2
β(D), f =

∑∞
k=0 akz

k.
It is easy to show that

Lemma 2.2 (1) T β
z f =

∑∞
k=0 akz

k+1.
(2) T β

z
∗
T β

z f =
∑∞

k=0
(2+k)2β

(1+k)2β akz
k.

(3) T β
z
∗2
T β

z f =
∑∞

k=1
(2+k)2β

k2β akz
k−1.

By Lemma 2.2 and Theorem 1.3, we prove the main theorem.

Proof of Theorem 2.1 In fact, ‖zk‖β = (1 + k)β , and

T β
z

∗
1 = 0, T β

z

∗
(zk) =

(1 + k)2β

k2β
zk−1 (k ≥ 1).

Suppose f ∈ H2
β , f =

∑∞
k=0 akz

k. Then ‖f‖2
β =

∑∞
k=0 |ak|2(1 + k)2β <∞.

Theorem 2.1 follows if we show that the three conditions of Theorem 1.3.

Step 1 We need to prove the following inequality.

‖T β
z f‖2

β + ‖T β
z

∗2
T β

z f‖2
β ≤ 2‖T β

z

∗
T β

z f‖2
β . (2.1)

It is easy to calculate that

‖T β
z f‖2

β + ‖T β
z

∗2
T β

z f‖2
β =

∞∑

k=0

|ak|2(2 + k)2β +
∞∑

k=1

|ak|2 (2 + k)4β

k4β
k2β

=
∞∑

k=0

|ak|2(2 + k)2β +
∞∑

k=1

|ak|2 (2 + k)4β

k2β
, (2.2)
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and

2‖T β
z

∗
T β

z f‖2
β = 2

∞∑

k=0

|ak|2 (2 + k)4β

(1 + k)4β
(1 + k)2β

= 2
∞∑

k=0

|ak|2 (2 + k)4β

(1 + k)2β
. (2.3)

In order to prove the inequality (2.1), by comparing (2.2) and (2.3), we only need to prove
that

22β ≤ 2 × 24β (2.4)

and

(2 + k)2β +
(2 + k)4β

k2β
≤ 2

(2 + k)4β

(1 + k)2β
, ∀k ≥ 1. (2.5)

First, it is easy to see that for −1
2 ≤ β ≤ 0, we have that (2.4) holds.

Next, write t = 2β, the inequality (2.5) is equal to

1 +
(2 + k)t

kt
≤ 2

(2 + k)t

(1 + k)t
⇐⇒ 1

(2 + k)t
+

1
kt

≤ 2
(1 + k)t

⇐⇒ 1
(2 + k)t

− 1
(1 + k)t

≤ 1
(1 + k)t

− 1
kt
.

When −1
2 ≤ β ≤ 0, that is, −1 ≤ t ≤ 0, we have 1

(1+k)t ≥ 1
kt . In order to prove the

inequality (2.5), we only need to prove that
1

(2+k)t − 1
(1+k)t

1
(1+k)t − 1

kt

≤ 1. (2.6)

For −1 ≤ t ≤ 0, since the functions g(x) = (x+ k + 1)−t and h(x) = (x+ k)−t is derivable
on the interval [0, 1], by the Cauchy mean value theorem, there exists a ξ ∈ [0, 1] such that

g(1) − g(0)
h(1) − h(0)

=
g′(ξ)
h′(ξ)

=
−t(1 + k + ξ)−t−1

−t(k + ξ)−t−1
=

(k + ξ)t+1

(1 + k + ξ)t+1
≤ 1,

and

g(1) − g(0)
h(1) − h(0)

=
g′(ξ)
h′(ξ)

=
1

(2+k)t − 1
(1+k)t

1
(1+k)t − 1

kt

.

This means that (2.6) follows, then the inequality (2.5) follows.
Hence we have that for −1

2 ≤ β ≤ 0,

‖T β
z f‖2

β + ‖T β
z

∗2
T β

z f‖2
β ≤ 2‖T β

z

∗
T β

z f‖2
β .

Step 2 For β ≤ 0, it is easy to see that

‖T β
z f‖β ≥ 2β‖f‖β .

That is, Tz is bounded below.

Step 3 We will prove that for β ≤ 0,

lim
n→∞ ‖T β

z

∗n
f‖β = 0, ∀f ∈ H2

β(D).
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In fact, for n > k, we have T β
z
∗n

(zk) = 0; for n ≤ k, we have T β
z
∗n

(zk) = (1+k)2β

(1+k−n)2β z
k−n.

By calculating,

‖T β
z

∗n
f‖2

β =
∥
∥
∥
∥

∞∑

k=n

|ak|2 (1 + k)2β

(1 + k − n)2β
zk−n

∥
∥
∥
∥

2

β

=
∞∑

k=n

|ak|2 (1 + k)4β

(1 + k − n)4β
‖zk−n‖2

β

=
∞∑

k=n

|ak|2 (1 + k)4β

(1 + k − n)2β
.

Since f ∈ H2
β, f =

∑∞
k=0 akz

k, ‖f‖2
β =

∑∞
k=0 |ak|2(1 + k)2β < ∞. Then, when n → ∞, we get

∑∞
k=n |ak|2(1 + k)2β → 0. For β ≤ 0, note that (1+k)2β

(1+k−n)2β ≤ 1 (k ≥ n). We have

‖T β
z

∗n
f‖2

β =
∞∑

k=n

|ak|2 (1 + k)4β

(1 + k − n)2β

≤
∞∑

k=n

|ak|2(1 + k)2β → 0.

Hence we get that for β ≤ 0, limn→∞ ‖T β
z
∗n
f‖β = 0.

In conclusion, T β
z satisfies the three conditions of Theorem 1.3, then M�zM is a generating

wandering subspace of M , that is,

M = [M � zM ]T β
z
.

3 The Quasi-wandering Subspaces of Hardy–Sobolev Spaces

An operator T on a Hilbert space H has the quasi-wandering property if for each nontrivial
invariant subspace M of H for T , M = [PMTM⊥]T .

Let M be an nontrivial invariant subspace of H2(D) for Tz. Since in this case Tz is an
isometry, i.e., T ∗

z Tz = I, then one easily sees PMTzM
⊥ ⊂ M � TzM . On the other hand, it is

easy to check (see [11])
dimM � TzM ≤ dimPMTzM

⊥. (3.1)

Thus we have
PMTzM

⊥ = M � zM.

So in the one variable Hardy space case, a quasi-wandering subspace coincides with a wan-
dering subspace for M . It is not the case in the Bergman space although (3.1) still holds. The
quasi-wandering subspace in the Bergman space is studied recently by Izuchi et al. in [11], they
proved the following theorem.

Theorem 3.1 Let M be an invariant subspace of L2
a(D) for Tz. Then the following conditions

are equivalent :
(1) PMTzM

⊥is not dense in M .
(2) There exists an f ∈M with f �= 0 satisfying T ∗

z f ∈M .
(3) M ∩ D �= {0}, D is Dirichlet space.
(4) There exists an f ∈M with f �= 0 satisfying f ′ ∈M .
(5) There exists an f ∈M with f �= 0 satisfying f − TzT

∗
z f ∈M .
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Moreover, in [11], it is shown that the shift operator on the Bergman space L2
a(D) has the

quasi-wandering property. This result is seen as a counterpart of the Aleman, Richter and
Sundberg’s theorem.

Theorem 3.2 ([11]) Let M be an nontrivial invariant subspace of L2
a(D) for Tz. Then M =

[PMTzM
⊥]Tz

.

Recently, Chen [6] considers the quasi-wandering property for n-tuple of operators T =
(Tz1 , . . . , Tzn

) on a reproducing analytic Hilbert space HK
n on the unit ball Bn of C

n defined
by a U-invariant kernel K.

We say a closed subspace M of Hilbert space H is invariant for an n-tuple of operators
T = (T1, . . . , Tn), if TiM ⊂M for all i = 1, . . . , n. Set

PMTM⊥ = PMT1M
⊥ + · · · + PMTnM

⊥.

We call an operator tuple T = (T1, . . . , Tn) has the quasi-wandering property if for each non-
trivial invariant subspace M of H for T , M = [PMTM⊥]T .

Fix a constant v with v > 0, set

Kv(z, w) =
1

(1 − 〈z, w〉)v
.

Chen proved the following theorem.

Theorem 3.3 ([6]) If K = Kv or K is a U-invariant complete Nevanlinna-Pick kernel, then
the n-shift T = (Tz1 , . . . , Tzn

) on HK
n has the quasi-wandering property.

Motivated by the work of Chen, in this section we will consider the quasi-wandering property
for Tz on the Hardy–Sobolev Spaces H2

β(D).

The following lemmas are very useful in our proof.

Lemma 3.4 Let M be an invariant subspace of a Hilbert space H for T . Then M�[PMTM⊥]T
= H � [M⊥]T . Moreover, [PMTM⊥]T = M if and only if [M⊥]T = H.

Proof Suppose f ∈ H � [M⊥]T . Then

f ⊥ T kM⊥

for all k ≥ 0. Obviously f ∈M . Since

T kPMTM⊥ ⊂ T kTM⊥ − T kPM⊥TM⊥

⊂ T k+1M⊥ − T kM⊥,

we have f ⊥ T kPMTM⊥ for all k ≥ 0. Hence f ∈ M and f ⊥ [PMTM⊥]T , that is, f ∈
M � [PMTM⊥]T . For the converse, suppose f ∈M � [PMTM⊥]T . Then

f ∈M, f ⊥ T kPMTM⊥, k ≥ 0. (3.2)

Noting that for k ≥ 1,

T kM⊥ ⊂ T k−1PMTM⊥ + T k−1PM⊥TM⊥

⊂ T k−1PMTM⊥ + T k−1M⊥,
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then by induction, we have

T kM⊥ ⊂
k∑

i=1

T k−iPMTM⊥ +M⊥.

It follows from (3.2) that f ⊥ T kM⊥ for all k ≥ 0. We get that f ∈ H � [M⊥]T . The proof is
complete. �

In the last part of this paper, we consider the quasi-wandering property for Tz on the
Hardy–Sobolev Spaces H2

β(D).
Since

en(z) =
zn

(1 + n)β
, n ≥ 0

forms a canonical orthonormal basis for Hilbert space H2
β(D), then the reproducing kernel of

H2
β(D) is

K(z, w) =
∞∑

n=0

en(z)en(w) =
∞∑

n=0

znwn

(1 + n)2β
.

Since K(0, 0) = 1, in some open neighborhood of zero, we have

1
K(z, w)

=
∞∑

k=0

ckz
kwk.

Because

1 =
1

K(z, w)
K(z, w) =

( ∞∑

k=0

ckz
kwk

)( ∞∑

n=0

znwn

(1 + n)2β

)

,

we obtain that
⎧
⎨

⎩

c0 = 1,
∑

k≤n

ck
(1 + n− k)2β

= 0, n ≥ 1.
(3.3)

Set S =
∑∞

k=0 ckT
β
z

k
T β

z
∗k

, SN =
∑N

k=0 ckT
β
z

k
T β

z
∗k

. It is not difficult to check that

T β
z

k
T β

z

∗k
(zn) =

⎧
⎪⎨

⎪⎩

0, n < k,

(1 + n)2β

(1 + n− k)2β
zn, n ≥ k.

(3.4)

Lemma 3.5 For every polynomial P of H2
β(D), S(P ) = P (0). Hence, S can be extended

continuously on H2
β(D) as the evaluation functional at zero.

Proof When n ≥ 1, by (3.3) and (3.4), for every monomial zn,

S(zn) =
∞∑

k=0

ckT
β
z

k
T β

z

∗k
(zn)

=
∑

k≤n

ckT
β
z

k
T β

z

∗k
(zn)

=
∑

k≤n

ck
(1 + n)2β

(1 + n− k)2β
zn
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= (1 + n)2βzn
∑

k≤n

ck
(1 + n− k)2β

= 0,

then S(P ) = P (0), Hence, S can be extended continuously on H2
β(D) as the evaluation func-

tional at zero. �

Lemma 3.6 When N → ∞, SN → S(SOT) in H2
β(D). That is, ‖SNf−Sf‖H2

β
(D) → 0, ∀f ∈

H2
β(D).

Proof Fix each f ∈ H2
β, ∀ε > 0, there exists a polynomial Pn such that

‖f − Pn‖β < ε.

Set N > n, a direct calculation gives that

‖(S − SN )f‖β ≤ ‖(S − SN )Pn‖β + ‖(S − SN )(f − Pn)‖β

= Pn(0) − Pn(0) + ‖(S − SN )(f − Pn)‖β

≤ ‖S − SN‖‖f − Pn‖β

≤ (‖S‖ + ‖SN‖)‖f − Pn‖β

≤Mε,

where M is a constant. Then we have SN → S(SOT). �
We are now ready to prove the main result.

Theorem 3.7 Let M be a nontrivial invariant subspace of H2
β(D) for T β

z . Then M = [PMT β
z

M⊥]T β
z
.

Proof In order to prove that M = [PMT β
z M

⊥]T β
z
, by Lemma 3.4, we only need to prove that

H2
β = [M⊥]T β

z
. If the claim is not true, that is, H2

β �= [M⊥]T β
z
, then there exists f ∈ H2

β with

f �= 0, and f ⊥ [M⊥]T β
z
. Since f ⊥ T β

z
k
M⊥(k ≥ 0), we have T β

z
∗k
f ∈ M . Since M is an

invariant subspace, then
T β

z

k
T β

z

∗k
f ∈M (k ≥ 0).

We write f =
∑∞

k=0 akz
k with some ai �= 0. Let h = T β

z
∗i
f ∈M , h =

∑∞
k=0 bkz

k, where b0 �= 0.

Since for all N , SNh =
∑N

k=0 ckT
β
z

k
T β

z
∗k
h ∈ M , by Lemma 3.6, we have ‖SNh − Sh‖ → 0.

Noting that M is closed, by Lemma 3.5, we have Sh = b0 ∈M , which implies that H2
β = M , a

contradiction. So the claim holds, the proof is completed. �

Acknowledgements The authors wish to thank referees for their many helpful comments
and suggestions that greatly improved the paper.

References
[1] Aleman, A., Richter, S., Sundberg, C.: Beurlings theorem for the Bergman space. Acta Math., 117, 275–310

(1996)

[2] Apostol, C., Das, B., Sarkar, J., et al.: Invariant subspaces, dilation theory, and the structure of the predual

of a dual algebra. J. Funct. Anal., 63, 369–404 (1985)

[3] Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math., 81, 239–255

(1949)

[4] Cao, G. F., He, L.: Hardy–Sobolev spaces and their multipliers. Sci. China Math., 57, 23610–2368 (2014)



1692 Xiao J. S. and Cao G. F.

[5] Cao, G. F., He, L.: Fredholmness of multipliers on Hardy–Sobolev spaces. J. Math. Anal. Appl., 418, 1–10

(2014)

[6] Chen, Y.: Quasi-wandering subspaces in a class of reproducing analytic Hilbert spaces. Proc. Amer. Math.

Soc., 140, 4235–4242 (2012)

[7] Cho, H. R., Zhu, K. H.: Holomorphic mean Lipschitz spaces and Hardy–Sobolev spaces on the unit ball.

Complex Variables and Elliptic Equations, 57, 995–1024 (2012)

[8] Hedenmalm, H.: An invariant subspace of the Bergman space having the codimension two property. J.

Reine Angew. Math., 443, 1–9 (1993)

[9] Hedenmalm, H., Richter, S., Seip, K.: Interpolating sequences and invariant subspaces of given index in

the Bergman spaces. J. Reine Angew. Math., 477, 13–30 (1996)

[10] Izuchi, K. J., Izuchi, K. H., Izuchi, Y.: Wandering subspaces and the Beurling type theorem I. Arch. Math.,

95, 439–446 (2010)

[11] Izuchi, K. J., Izuchi, K. H., Izuchi, Y.: Quasi-wandering subspaces in the Bergman space. Integr. Equ.

Oper. Theory, 67, 151–161 (2010)

[12] Mccullough, S., Richter, S.: Bergman-type reproducing kernels, contractive divisors, and dilations. J. Funct.

Anal., 190, 447–480 (2002)

[13] Olofsson, A.: Wandering subspace theorems. Integr. Equ. Oper. Theory, 51, 395–409 (2005)

[14] Ortega, J. M., Fabrega, J.: Multipliers in Hardy–Sobolev spaces. Integr. Equ. Oper. Theory, 55, 535–560

(2006)

[15] Shimorin, S.: Wold-type decompositions and wandering subspaces for operators close to isometries. J.

Reine Angew. Math., 531, 147–189 (2001)

[16] Sun, S., Zheng, D.: Beurling type theorem on the Bergman space via the Hardy space of the bidisk. Sci.

China Ser. A, 52, 2517–2529 (2009)


