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Abstract Let Q(x) be a nonnegative definite, symmetric matrix such that
√

Q(x) is Lipschitz con-

tinuous. Given a real-valued function b(x) and a weak solution u(x) of div(Q∇u) = b, we find sufficient

conditions in order that
√

Q∇u has some first order smoothness. Specifically, if Ω is a bounded open

set in R
n, we study when the components of

√
Q∇u belong to the first order Sobolev space W 1,2

Q (Ω)

defined by Sawyer and Wheeden. Alternately, we study when each of n first order Lipschitz vector field

derivatives Xiu has some first order smoothness if u is a weak solution in Ω of
∑n

i=1 X ′
iXiu + b = 0.

We do not assume that {Xi} is a Hörmander collection of vector fields in Ω. The results signal ones

for more general equations.

Keywords Degenerate elliptic differential equations, degenerate quadratic forms, weak solutions,

second order regularity
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1 Introduction

We begin with some notation and background. Let Ω be a bounded open set in R
n and Q(x)

be a nonnegative definite, symmetric n × n matrix on Ω. Assume that
√
Q(x) is Lipschitz

continuous in Ω, i.e., that the entries of
√
Q(x) are Lipschitz continuous in Ω, and let

Q(x, ξ) = ξ ·Q(x)ξ =
√
Q(x)ξ ·

√
Q(x)ξ, x ∈ Ω, ξ ∈ R

n, (1.1)

denote the quadratic form corresponding to Q. Note that if Q is singular at a point x, then
Q(x, ξ) vanishes at some ξ �= 0. Following [6], we consider the Sobolev space W 1,2

Q (Ω) of all
pairs (u(x),v(x)), x ∈ Ω, where u is real-valued and v is a vector in R

n, such that there is a
sequence {uk(x)}∞k=1 of Lipschitz functions on Ω satisfying

lim
k→∞

{
‖uk − u‖L2(Ω) +

( ∫

Ω

Q(x,∇uk(x) − v(x)) dx
) 1

2
}

= 0. (1.2)

Equivalently, as k → ∞,

uk → u in L2(Ω) and
√
Q∇uk →

√
Qv in L2(Ω).

Later we will see that the functions uk in the approximating sequence {uk} can be chosen to
belong to Lip(Ω) ∩ C∞(Ω).
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If (u,v) ∈W 1,2
Q (Ω), then by [6], since

√
Q ∈ Lip(Ω), the vector v is uniquely determined by

the first entry u in the sense that if two pairs (u,v1), (u,v2) with first coordinate u belong to
W 1,2

Q (Ω), then
√
Qv1 =

√
Qv2 a.e. in Ω. However, v1 may differ from v2 at points where

√
Q is

singular. In some cases when
√
Q /∈ Lip(Ω), uniqueness of the second entry fails dramatically;

see e.g. [6]. If (u,v) ∈ W 1,2
Q (Ω), we will denote v = ∇u although u may not have an ordinary

weak gradient in Ω. We often write u ∈W 1,2
Q (Ω) instead of (u,∇u) ∈W 1,2

Q (Ω), and we set

‖u‖W 1,2
Q (Ω) =

( ∫

Ω

|u(x)|2dx+
∫

Ω

|
√
Q(x)∇u(x)|2dx

) 1
2

if u ∈W 1,2
Q (Ω). (1.3)

Let b ∈ L1
loc(Ω). Suppose u ∈W 1,2

Q (Ω) and u is a weak solution in Ω of the equation

div
(
Q(x)∇u(x)) = b(x), x ∈ Ω. (1.4)

Here we say as usual that u is a weak solution in Ω of (1.4) if
∫

Ω

(Q(x)∇u(x)) · ∇Φ(x) dx+
∫

Ω

b(x)Φ(x) dx = 0 for all Φ ∈ Lip0(Ω). (1.5)

The main purpose of this paper is to find conditions implying that the components of
√
Q∇u

then belong to W 1,2
Q (Ω). We will consistently denote these components by Vi ·∇u, i = 1, . . . , n,

where Vi(x) is the i-th row vector of
√
Q(x). Our main result is as follows.

Theorem 1.1 Let Ω be a bounded open set in R
n and Q(x) be a nonnegative definite, sym-

metric n × n matrix on Ω satisfying
√
Q ∈ C1,1(Ω). Suppose that u, b ∈ W 1,2

Q (Ω) and u is a
weak solution in Ω of (1.4) represented in W 1,2

Q (Ω) by a sequence {uk}∞k=1 of smooth functions.
Let {w�}� be the entries of

√
Q and let {Sk} be the sequence of numbers defined by

Sk =
( ∫

Ω

∣
∣
∣∣

{ ∑

�

|w�(x)|
}
∇uk(x)

∣
∣
∣∣

2

dx

) 1
2

=
∥
∥
∥∥

∑

�

|w�|∇uk

∥
∥
∥∥

L2(Ω)

. (1.6)

If
lim sup

k→∞
Sk <∞, (1.7)

then every component Vi · ∇u of
√
Q∇u belongs to W 1,2

Q (Ω) and

‖Vi · ∇u‖W 1,2
Q (Ω) ≤ C lim sup

k→∞
Sk, (1.8)

where C is a constant that depends only on ‖b‖W 1,2
Q (Ω) and the sum of ‖w�‖L∞(Ω) and the

Lipschitz constants in Ω of the w� and their first partial derivatives.

We now list some comments about condition (1.7). First, if u ∈W 1,2
Q (Ω) and {uk} represents

u in W 1,2
Q (Ω), then ‖√Q∇uk − √

Q∇u‖L2(Ω) → 0 as k → ∞, or equivalently, ‖Vi · ∇uk − Vi ·
∇u‖L2(Ω) → 0 for every row vector Vi of

√
Q. Hence ‖Vi · ∇uk‖L2(Ω) is bounded in k for every

i. On the other hand, assumption (1.7) is much stronger since

|Vi · ∇uk| ≤
∣∣
∣
∣
∑

�

|w�|∇uk

∣∣
∣
∣ for every i and k.

Next, (1.7) can be rewritten in vector field notation as

lim sup
k→∞

∥∥
∥
∥

( ∑

�

|w�|
)
ei · ∇uk

∥∥
∥
∥

L2(Ω)

<∞, i = 1, . . . , n,
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where ei is the i-th unit vector. This clearly holds if u belongs to the Sobolev space W 1,2
Q∗ (Ω),

where Q∗ is the (diagonal) matrix with rows (
∑

� |w�|)2ei. For example, since every w� is
bounded in Ω, it holds if u belongs to the classical Sobolev space W 1,2(Ω) since then the uk can
be chosen to satisfy ‖∇uk −∇u‖L2(Ω) → 0. Furthermore, in case

∑
� |w�| is bounded away from

0 in Ω, then Sk ≥ c ‖∇uk‖L2(Ω) for some positive constant c independent of k, and then for
any sequence {uk} of Lipschitz functions, (1.7) is equivalent to lim supk→∞ ‖∇uk‖L2(Ω) < ∞.
Finally, we do not know if the conclusion of Theorem 1.1 remains true if (1.7) is replaced by
finiteness of some number smaller than lim supk→∞ Sk and all other hypotheses of the theorem
are retained.

Under our assumptions that Ω is bounded and
√
Q is Lipschitz continuous in Ω, W 1,2

Q (Ω)
can be identified with a well-known class of functions having weak vector field derivatives,
and Theorem 1.1 can be restated in terms of this class, as we now discuss. Let V (x) be a
Lipschitz vector in Ω, and let X = V · ∇ be the corresponding vector field derivative. A
function g ∈ L1

loc(Ω) is called the weak derivative Xu in Ω of a function u ∈ L2
loc(Ω) if for all

ϕ ∈ Lip0(Ω),
∫

Ω

g ϕ dx = −
∫

Ω

uX ′ϕdx = −
∫

Ω

u div(ϕV ) dx

= −
∫

Ω

u
{
V · ∇ϕ+ ϕ divV

}
dx. (1.9)

The weak derivative Xu is clearly unique if it exists. If u ∈W 1,2
Q (Ω) and

√
Q ∈ Lip(Ω), then a

simple limit argument based on integration by parts shows that if Xi = Vi ·∇, where {Vi}n
i=1 are

the row vectors of
√
Q, then each weak derivative Xiu exists in Ω and Xiu = Vi · ∇u ∈ L2(Ω).

Denoting X = {Xi}n
i=1, the collection H1,2

X (Ω) of all u ∈ L2(Ω) such that every Xiu ∈ L2(Ω)
thus contains W 1,2

Q (Ω). By [2, 3] and [6], the converse is also true, namely, if the rows Vi of√
Q are Lipschitz vectors in Ω, then H1,2

X (Ω) ⊂W 1,2
Q (Ω). See [6] for some other conditions that

guarantee this equivalence.
As a consequence, Theorem 1.1 can be rephrased as follows in terms of a given collection

X = {Xi = Vi · ∇}n
i=1 of vector field derivatives in Ω. Let each Vi ∈ C1,1(Ω) and suppose that

u, b ∈ H1,2
X (Ω) and u is a weak solution in Ω of

∑
iX

′
iXiu+ b = 0. Choose a sequence {uk} of

smooth functions satisfying

lim
k→∞

{‖uk − u‖L2(Ω) + ‖Xiuk −Xiu‖L2(Ω)

}
= 0 for every i.

If lim supk→∞
∥
∥ ∑

� |V�|∇uk

∥
∥

L2(Ω)
<∞, then every Xiu ∈ H1,2

X (Ω), and for j = 1, . . . , n,

‖XjXiu‖L2(Ω) ≤ C lim sup
k→∞

∥
∥
∥∥

∑

�

|V�|∇uk

∥
∥
∥∥

L2(Ω)

with C as in Theorem 1.1.

2 Preliminaries

The proof of Theorem 1.1 uses relations betweenW 1,2
Q (Ω) and difference quotients along integral

curves associated with row vectors of
√
Q. These relations are derived in this section. See for

example [4, Section 7.11] for analogues in the case of ordinary W 1,2(Ω) and ordinary difference
quotients. We begin by recalling some things from Introduction.
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Let Ω be a bounded open set in R
n and W 1,2

Q (Ω) be the Sobolev space associated as above
with a nonnegative definite n × n symmetric matrix Q = Q(x), x ∈ Ω. We assume that the
entries of

√
Q belong to the class Lip(Ω) of Lipschitz continuous functions in Ω, and often that

they also belong to C1(Ω) or even to C1,1(Ω). For each i = 1, . . . , n, let Vi(x) be the vector equal
to the i-th row of

√
Q(x), and let Xi(x) = Vi(x) ·∇ be the corresponding vector field derivative.

Denote the collection of these vector fields by X (x) = {Xi(x)}n
i=1 = {V1(x) · ∇, . . . , Vn(x) · ∇},

x ∈ Ω. Since the entries of
√
Q belong to Lip(Ω), the same is true for the entries of each

Vi. Then W 1,2
Q (Ω) coincides with the Sobolev space H1,2

X (Ω) of functions w ∈ L2(Ω) with
weak derivatives Xiw in L2(Ω) (see [2, 3, 6]), where a function μ ∈ L1

loc(Ω) is called the weak
derivative Xiw of w if for all ϕ in the class Lip0(Ω) of functions in Lip(Ω) with compact support
in Ω,

∫

Ω

μϕdx = −
∫

Ω

wX ′
iϕdx = −

∫

Ω

w div(ϕVi) dx

= −
∫

Ω

w (Vi · ∇ϕ+ ϕ divVi) dx.

Each weak derivative Xiw is uniquely determined up to a set of Lebesgue measure zero. Fur-
thermore, if Q(x, ξ) is the quadratic form defined by (1.1), then since

Q(x, ξ) =
n∑

i=1

(Vi(x) · ξ)2,

(1.2) implies that if w ∈W 1,2
Q (Ω), there is a sequence {wk}∞k=1 ⊂ Lip(Ω) such that

‖w − wk‖L2(Ω) +
n∑

i=1

‖Xiw − Vi · ∇wk‖L2(Ω) → 0 as k → ∞. (2.1)

We denote Xiw = Vi · ∇w and
√
Q∇w = (X1w, . . .Xnw).

The approximating functions in (2.1) can be chosen to satisfy wk ∈ C∞(Ω)∩Lip(Ω) since Ω
is bounded and

√
Q is bounded in Ω. To see why, first extend each wk ∈ Lip(Ω) to a Lipschitz

function on all of R
n (see e.g. [7, Theorem 7.64]) and multiply the extension by a smooth

function with compact support in R
n equal to 1 on Ω. By convolving the result with a smooth

compactly supported approximation of the identity, it follows from standard facts that there
are functions w̃k ∈ C∞(Ω)∩Lip(Ω) such that wk − w̃k → 0 in the norm of the classical Sobolev
space W 1,2(Ω). Then, for every i, since Vi is bounded in Ω,

‖Vi · (∇wk −∇w̃k)‖L2(Ω) ≤ ‖Vi‖L∞(Ω)‖∇wk −∇w̃k‖L2(Ω) → 0 as k → ∞.

Now let V = V (x) be a Lipschitz vector field in Ω. For t ∈ R, consider the integral curves
γ(t, x) = γ(V, t, x) given by

γ′(t, x) = V (γ(t, x)), γ(0, x) = x. (2.2)

Here γ′(t, x) denotes the t-derivative of γ(t, x). If x ∈ Ω and δ(x) = disteuc(x, ∂Ω), then
according to Picard’s theorem, there is a positive constant cV depending only on ‖V ‖L∞(Ω) and
the Lipschitz constant of V (denoted ‖V ‖Lip(Ω)) such that γ(t, x) exists, lies in Ω, and is unique
if |t| < cV δ(x). In what follows, cV and CV will denote various constants depending only on
‖V ‖L∞(Ω) and ‖V ‖Lip(Ω).
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Let us recall some facts about integral curves. For t and x as above, γ(t, x) satisfies the
integral equation

γ(t, x) = x+
∫ t

0

V (γ(τ, x)) dτ, (2.3)

and consequently

|γ(t, x) − x| =
∣∣
∣
∣

∫ t

0

V (γ(τ, x)) dτ
∣∣
∣
∣ ≤ CV |t|.

Also, if x ∈ Ω and t, s ∈ R satisfy |t|, |s| ≤ cV δ(x), then

|γ(t, x) − γ(s, x)| =
∣∣
∣
∣

∫ t

s

V (γ(τ, x)) dτ
∣∣
∣
∣ ≤ CV |t− s|.

Therefore γ(t, x) is Lipschitz continuous in t if |t| < cV δ(x), and its Lipschitz constant is
independent of x. See also Lemma 4.1.

It is easy to show that γ(t, x) is also locally Lipschitz continuous in x uniformly in t for
small t. In fact, if x, y ∈ Ω and |t| < cV min{δ(x), δ(y)}, then

|γ(t, x) − γ(t, y)| =
∣
∣
∣∣(x− y) +

∫ t

0

[
V (γ(τ, x))− V (γ(τ, y))

]
dτ

∣
∣
∣∣

≤ |x− y| + CV |t| sup
τ :|τ |≤|t|

|γ(τ, x) − γ(τ, y)|,

and hence, for all θ with 0 < θ < cV min{δ(x), δ(y)}, we have

sup
t:|t|≤θ

|γ(t, x) − γ(t, y)| ≤ |x− y| + CV θ sup
t:|t|≤θ

|γ(t, x) − γ(t, y)|.

Now choosing θ to also satisfy CV θ ≤ 1/2 and subtracting the second term on the right from
both sides, we obtain

sup
t:|t|≤θ

|γ(t, x) − γ(t, y)| ≤ 2|x− y|, (2.4)

as claimed.
In particular, these estimates imply that for every compact set K ⊂ Ω, there is a positive

constant δV,K depending only on V and K such that γ(t, x) is Lipschitz continuous in (t, x) if
|t| < δV,K and x ∈ K, with Lipschitz constant independent of K.

For the integral curves γ(t, x) = γ(V, t, x), let us now consider the Jacobian ∂z/∂x of the
change of variables from x to z given by

z = γ(t, x) for fixed t.

We always assume that (t, x) satisfies x ∈ Ω and |t| < cV δ(x), but unless we make a further
restriction or convention, there may be no fixed value of t such that γ(t, x) is defined for all
x ∈ Ω, in particular for those x near ∂Ω. For example, in the next two lemmas, x will lie in an
open set Ω′ ⊂ Ω with compact closure in Ω, and then there is a constant δ > 0 depending on Ω′

and V such that γ(t, x) is defined for all (t, x) with |t| < δ and x ∈ Ω′. See also the convention
used in Section 3 for a similar purpose.

To compute the Jacobian, we will assume that V ∈ Lip(Ω) ∩ C1(Ω). This guarantees that
the chain rule can be applied to V (γ(t, x)) as a function of x, and also by [1, 5] that γ(t, x) is
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continuously differentiable in x. Denoting V (y) = (v1(y), . . . , vn(y)) and x = (x1, . . . , xn), let
us show that

det
∂z

∂x
= 1 +

∫ t

0

[ n∑

k=1

(
∂

∂xk
γ(s, x)

)
· (∇vk)(γ(s, x))

]
ds+R(t, x), (2.5)

where the remainder R(t, x) satisfies the following estimate: there are constants cV , CV > 0
such that

|R(t, x)| ≤ CV t
2 if x ∈ Ω and |t| < cV δ(x). (2.6)

Both (2.5) and (2.6) can be deduced from a formula for the determinant of the Jacobian
given for example in [1]. Alternately, they can be verified by straightforward computation as
follows. Denote z = γ(t, x) = (γ1(t, x), . . . , γn(t, x)). Then

det
∂z

∂x
= det

(
∂

∂xj
γi(t, x)

)

ij

and

γ′i(t, x) = vi(γ(t, x)), so that γi(t, x) = xi +
∫ t

0

vi(γ(s, x))ds.

Therefore,

∂

∂xj
γi(t, x) = δij +

∫ t

0

(
∂

∂xj
γ(s, x)

)
· (∇vi)(γ(s, x)) ds and

∂z

∂x
= I +D(t, x) with

D(t, x) =
( ∫ t

0

(
∂

∂xj
γ(s, x)

)
· (∇vi)(γ(s, x)) ds

)

ij

. (2.7)

Formula (2.5) now follows by expanding the resulting determinant, which has the form det ∂z
∂x =

det(I + D(t, x)). In fact, det(I + D(t, x)) is the characteristic polynomial P (λ) of D(t, x)
evaluated at λ = −1. Thus, P (−1) =

∑n
k=0Mk where M0 = 1 and Mk for k ≥ 1 is the sum of

the determinants of the k × k principal minors of D(t, x). Since

M1 = trace D(t, x) =
∫ t

0

[ n∑

k=1

(
∂

∂xk
γ(s, x)

)
· (∇vk)(γ(s, x))

]
ds,

it follows that (2.5) holds with R(t, x) =
∑n

k=2Mk. The size estimate (2.6) is then immediate
since every entry of D(t, x) is bounded in absolute value by CV |t| due to the Lipschitz behaviors
of γ(x, t) and V .

Similarly,
|trace D(t, x)| ≤ CV |t| if x ∈ Ω and |t| < cV δ(x).

Since trace D(t, x) is the same as the integral term in (2.5), (2.5) can be rewritten as

det
∂z

∂x
= 1 + trace D(t, x) +R(t, x),

and hence ∣
∣
∣∣ det

∂z

∂x
− 1

∣
∣
∣∣ ≤ CV |t| if x ∈ Ω and |t| < cV δ(x). (2.8)

We will often abbreviate (2.8) by writing det ∂z/∂x = 1 +O(t).
The next two lemmas show how difference quotients of the form

[
u(γ(h, x)) − u(x)

]
/h are

related to the vector field derivative (V · ∇u)(x).
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Lemma 2.1 Let Ω be a bounded open set in R
n, Q(x) be a nonnegative definite matrix and

V (x) be a vector field with (V (x) · ξ)2 ≤ Q(x, ξ) if x ∈ Ω, ξ ∈ R
n. Assume that V ∈ Lip(Ω) ∩

C1(Ω) and let γ(t, x) = γ(V, t, x) satisfy (2.2). If Ω′ ⊂ Ω is an open set with compact closure
in Ω, there is a positive constant δ depending on Ω′ and V such that

sup
h:0<|h|<δ

( ∫

Ω′

∣
∣
∣∣
u(γ(h, x)) − u(x)

h

∣
∣
∣∣

2

dx

) 1
2

≤ 2
( ∫

Ω

|(V · ∇u)(x)|2dx
) 1

2

≤ 2
( ∫

Ω

∣
∣(

√
Q∇u)(x)∣∣2dx

) 1
2

(2.9)

for any u ∈W 1,2
Q (Ω).

Proof Fix Ω′ as in the hypothesis and choose δ > 0 depending on Ω′ and V such that
γ(h, x) ⊂ Ω if x ∈ Ω′ and |h| < δ. Assuming first that u ∈ C1(Ω), we have

u(γ(h, x)) − u(x)
h

=
1
h

∫ h

0

d

dt

[
u(γ(t, x))

]
dt

=
1
h

∫ h

0

(∇u)(γ(t, x)) · γ′(t, x) dt

=
1
h

∫ h

0

(∇u)(γ(t, x)) · V (γ(t, x)) dt.

Therefore, ∣
∣
∣∣
u(γ(h, x)) − u(x)

h

∣
∣
∣∣

2

≤ 1
h

∫ h

0

|(V · ∇u)(γ(t, x))|2dt.

Integrating with respect to x over Ω′ gives
∫

Ω′

∣∣
∣
∣
u(γ(h, x)) − u(x)

h

∣∣
∣
∣

2

dx ≤ 1
h

∫ h

0

∫

Ω′
|(V · ∇u)(γ(t, x))|2dx dt.

In the inner integral on the right side, with t fixed, we make the change of variables z = γ(t, x).
Using (2.8), it follows by choosing δ smaller if necessary that | det(∂z/∂x)| ≥ 1/2 if |t| < δ and
x ∈ Ω′. The integral on the right is then at most

2
1
h

∫ h

0

∫

Ω

|(V · ∇u)(z)|2dz dt = 2
∫

Ω

|(V · ∇u)(z)|2dz.

This proves the lemma when u ∈ C1(Ω). The general case follows by approximation using (2.1)
and the comments in the paragraph after (2.1); note that if {uk(x)} converges in L2(Ω) to u(x)
and K is a compact set in Ω, then {uk(γ(h, x))} converges in L2(K) to u(γ(h, x)) for all fixed
small h by a similar change of variables argument. Furthermore, V · ∇uk → V · ∇u in L2(Ω)
if uk → u in W 1,2

Q (Ω), and we have ‖V · ∇u‖L2(Ω) ≤ ‖√Q∇u‖L2(Ω) by hypothesis, completing
the proof.

The integral curves γ(t, x) = γ(V, t, x) have a well-known translation property, namely,
there is a constant cV > 0 such that

γ(t, x) = γ(t− h, γ(h, x)) if |t|, |h| < cV δ(x) and x ∈ Ω. (2.10)

In fact, as functions of t, both γ(t, x) and γ(t − h, γ(h, x)) are integral curves of the same
Lipschitz vector field V , and they are equal at t = h since

γ(t− h, γ(h, x))
∣∣
t=h

= γ(0, γ(h, x)) = γ(h, x).
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Hence, (2.10) is a corollary of the uniqueness of integral curves once we show that γ(t−h, γ(h, x))
exists for x, t, h as in (2.10) with a suitable constant cV . We know there are constants c, C > 0
depending only on V such that γ(t, x) ⊂ Ω and |γ(t, x) − x| < C|t| if x ∈ Ω and |t| < cδ(x).
Then if x ∈ Ω and |h| < cδ(x),

δ(γ(h, x)) ≥ δ(x) − |γ(h, x) − x|
> δ(x) − C|h|
>

1
2
δ(x) if |h| < δ(x)/(2C).

If also |t|, |h| < (c/4)δ(x), then

|t− h| ≤ |t| + |h| < (c/2)δ(x) < cδ(γ(h, x)).

It follows that (2.10) holds for some cV > 0.
By choosing t = 0 in (2.10), we obtain a formula for the inverse of the mapping x → z =

γ(h, x), namely,
x = γ(−h, γ(x, h)) if x ∈ Ω and |h| < cV δ(x). (2.11)

Lemma 2.2 Let Ω be a bounded open set in R
n, V (x) be a vector in Lip(Ω) ∩ C1(Ω), and

γ(h, x) = γ(V, h, x) satisfy (2.2). Let Ω′ be an open set with compact closure in Ω. If u ∈ L2(Ω)
and for some δ > 0 and some finite L,

sup
h:0<|h|<δ

∫

Ω′

∣∣
∣
∣
u(γ(h, x)) − u(x)

h

∣∣
∣
∣

2

dx ≤ L2, (2.12)

then there is a sequence {hk} → 0 such that [u(γ(hk, x))−u(x)]/hk converges weakly in L2(Ω′)
to a function w(x). Furthermore, ‖w‖L2(Ω′) ≤ L, the vector field derivative V · ∇u exists in
the weak sense in Ω′, and V · ∇u = w in Ω′. In case (2.12) holds for every open set Ω′ that
has compact closure in Ω (for some δ depending on Ω′) with L independent of Ω′, then V · ∇u
exists in the weak sense in Ω and ‖V · ∇u‖L2(Ω) ≤ L.

Proof Fix Ω′ and let u satisfy (2.12). By standard results there is a sequence hk → 0 and a
function w with ‖w‖L2(Ω′) ≤ L such that [u(γ(hk, x))−u(x)]/hk converges weakly in L2(Ω′) to
w(x). In particular, for every ϕ ∈ Lip0(Ω′),

lim
hk→0

∫

Ω

u(γ(hk, x)) − u(x)
hk

ϕ(x) dx =
∫

Ω

w(x)ϕ(x) dx. (2.13)

Let us show that Xu = V · ∇u exists in the weak sense in Ω′ and satisfies Xu = w in Ω′, or
equivalently (see (1.9)) that for all ϕ ∈ Lip0(Ω′),

∫

Ω

u(x)V (x) · ∇ϕ(x) dx+
∫

Ω

u(x)ϕ(x) divV (x) dx = −
∫

Ω

w(x)ϕ(x) dx.

Since V ∈ C1(Ω), then γ(t, x) is continuously differentiable in x by [1]. By approximation,
we may also assume that ϕ is continuously differentiable in Ω′; in fact, any ϕ ∈ Lip0(Ω′) can
be approximated in ordinary W 1,2(Ω′) norm by a smooth approximation to the identity that is
still supported in Ω′.

For simplicity, we will write h = hk and h → 0 instead of hk → 0, and we consider only
those h which are small enough depending on Ω′ to make the argument below valid. By (2.13),

1
h

∫

Ω

u(γ(h, x))ϕ(x) dx− 1
h

∫

Ω

u(x)ϕ(x) dx→
∫

Ω

wϕdx as h→ 0.
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In the first integral, make the change of variables z = γ(h, x) with h fixed and small, and recall
from (2.11) that the inverse transformation is x = γ(−h, z). Using (2.5) and (2.6), we obtain

1
h

∫

Ω

u(z)ϕ(γ(−h, z)){1 + trace D(−h, z) +O(h2)} dz − 1
h

∫

Ω

u(z)ϕ(z) dz

→
∫

Ω

wϕdz as h→ 0.

Note that after the change of variables, we are able to retain Ω as the domain of integration in the
first integral due to the support of ϕ(γ(−h, z)), namely, if ϕ(γ(−h, z)) �= 0, then γ(−h, z) ∈ Ω′,
and consequently z ∈ Ω if |h| is small enough depending on Ω′. Therefore, by regrouping terms,

∫

Ω

u(z)
ϕ(γ(−h, z)) − ϕ(z)

h
dz +

∫

Ω

u(z)ϕ(γ(−h, z)) trace D(−h, z)
h

dz →
∫

Ω

wϕdz; (2.14)

here we have used the estimate
1
|h| O(h2)

∣∣
∣∣

∫

Ω

u(z)ϕ(γ(−h, z)) dz
∣∣
∣∣

≤ O(h)‖u‖L2(Ω)

( ∫

Ω

|ϕ(γ(−h, z))|2dz
) 1

2

≤ O(h)‖u‖L2(Ω)

( ∫

Ω

|ϕ(x)|2{1 +O(h)
}
dx

) 1
2

→ 0 as h→ 0.

Let us show that as h → 0 the first integral on the left in (2.14) converges to − ∫
Ω
uV ·

∇ϕdz and the second integral there converges to − ∫
Ω
uϕ divV dz. In the first integral, as in

Lemma 2.1,
ϕ(γ(−h, z)) − ϕ(z)

h
=

1
h

∫ −h

0

(∇ϕ)(γ(t, z)) · V (γ(t, z)) dt,

which converges pointwise to −V (z) · ∇ϕ(z) as h→ 0 since ∇ϕ is continuous. Thus, since
∣
∣
∣∣
ϕ(γ(−h, z)) − ϕ(z)

h

∣
∣
∣∣ ≤ C

|γ(−h, z) − z|
|h| ≤ C,

the part of the claim about the first integral in (2.14) follows from Lebesgue’s Dominated
Convergence Theorem. Similarly, if V = (v1, . . . , vn), then

trace D(−h, z) =
∫ −h

0

[ n∑

j=1

(
∂

∂zj
γ(s, z)

)
· (∇vj)(γ(s, z))

]
ds,

and by letting h→ 0, we obtain

lim
h→0

1
h

trace D(−h, z) = lim
h→0

1
h

∫ −h

0

[ n∑

j=1

(
∂

∂zj
γ(s, z)

)
· (∇vj)(γ(s, z))

]
ds = −divV (z)

since when s = 0, ∂
∂zj

γ(s, z) is the unit vector ej = (0, . . . , 0, 1, 0, . . . , 0) with j-th entry 1,
j = 1, . . . , n. This proves the lemma except for the assertion in its last sentence, which now
follows by letting Ω′ ↗ Ω.

We remark that hypothesis (2.12) can be slightly weakened without changing the conclusion
of Lemma 2.2, namely, in (2.12), the supremum over all h with 0 < |h| < δ can be replaced by
the supremum over any sequence of h values converging to 0, and then the sequence {hk} in
the conclusion is some subsequence of the one used to form the supremum.
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In passing, note that if a function u ∈ L2(Ω) satisfies the hypothesis of Lemma 2.2 for every
row vector Vi of

√
Q and for the same subset Ω′, then the part of the conclusion of the lemma

concerning Ω′ holds for every Xiu = Vi · ∇u with a sequence {hk} that is independent of i.
Then u ∈ H1,2

X (Ω′), where X = {Xi}n
i=1. Since

√
Q ∈ Lip(Ω), it follows (see the end of the

Introduction) that u ∈W 1,2
Q (Ω′). Furthermore, ‖√Q∇u‖L2(Ω′) ≤

∑n
i=1 Li, where

Li =
(

sup
h:0<|h|<δ

∫

Ω′

∣
∣∣
∣
u(γ(Vi, h, x)) − u(x)

h

∣
∣∣
∣

2

dx

) 1
2

.

If every Li is bounded by a number L that is independent of Ω′, then u ∈ W 1,2
Q (Ω) and

‖√Q∇u‖L2(Ω) ≤ nL.

3 Part of the Proof of Theorem 1.1

In this section we begin the proof of Theorem 1.1, completing its more technical parts in
the next section. Let

√
Q ∈ C1,1(Ω), u, b ∈ W 1,2

Q (Ω), and u be a weak solution in Ω of
div(Q(x)∇u) = b(x), namely,

∫

Ω

(Q(x)∇u) · ∇Φ(x) dx+
∫

Ω

b(x)Φ(x) dx = 0 for all Φ ∈ Lip0(Ω). (3.1)

Let Ω′ be an open set with compact closure in Ω, and let γ(h, x) = γ(V, h, x) for any fixed row
V = Vi of

√
Q. Our strategy is to use (3.1) and (1.7) to prove that there exists δ > 0 such that

sup
h:|h|<δ

∫

Ω′

∣
∣∣
∣
(
√
Q∇u)(γ(h, x)) − (

√
Q∇u)(x)

h

∣
∣∣
∣

2

dx ≤ L <∞

with L independent of Ω′. It then follows from Lemma 2.2 that
√
Q∇u ∈ W 1,2

Q (Ω), or more
precisely, each of its components Vi · ∇u ∈W 1,2

Q (Ω), proving Theorem 1.1.
Fix a row V = (v1, . . . , vn) of

√
Q and let γ(h, x) = γ(V, h, x). If ψ is any function defined

in Ω, denote

(Δhψ)(x) =
ψ(γ(h, x)) − ψ(x)

h
if x, γ(h, x) ∈ Ω.

We wish to replace Φ in (3.1) by Δ−hϕ(x) for a function ϕ supported in Ω to be chosen. As
noted earlier, there may be no fixed h such that Δ−hϕ(x) is defined for every x ∈ Ω due to
the requirement that γ(−h, x) ∈ Ω. This technical difficulty can be overcome by a simple
convention. First, extend V to R

n as a Lipschitz function V ∗ = (v∗1 , . . . , v
∗
n) with the same

Lipschitz constant and consider the integral curves γ∗(h, x) = γ(V ∗, h, x), (h, x) ∈ R × R
n.

Next, assuming that ϕ has support in Ω, extend ϕ to R
n by setting it equal to 0 outside its

support. Denoting the extension again by ϕ, we define

(Δh,∗ϕ)(x) =
ϕ(γ∗(h, x)) − ϕ(x)

h
, (h, x) ∈ (R \ {0}) × R

n,

and replace Φ in (3.1) by (Δ−h,∗ϕ)(x), noting that ϕ(γ∗(−h, x)) has support in Ω if h is small
enough depending on the support of ϕ. Then (3.1) takes the form

− 1
h

∫

Ω

Q(x)∇u(x) · ∇[ϕ(γ∗(−h, x))] dx+
1
h

∫

Ω

Q(x)∇u(x) · ∇ϕ(x) dx

=
1
h

∫

Ω

b(x)ϕ(γ∗(−h, x)) dx− 1
h

∫

Ω

b(x)ϕ(x) dx. (3.2)



52 Wheeden R. L.

The right side of (3.2) becomes, after changing variables in the first integral there,

1
h

∫

Ω

b(γ∗(h, x))ϕ(x){1 +O(h)} dx− 1
h

∫

Ω

b(x)ϕ(x) dx

=
∫

Ω

(
Δh,∗b

)
(x)ϕ(x) dx+

∫

Ω

b(γ∗(h, x))ϕ(x)O(1) dx. (3.3)

The operation of translation along an integral curve does not generally commute with the
gradient. Let us compute ∇[ϕ(γ∗(−h, x))]. Assuming as we may that ϕ ∈ C1(Ω), we have

∇[ϕ(γ∗(−h, x))] =
(

(∇ϕ)(γ∗(−h, x)) · ∂

∂x1
γ∗(−h, x), . . . , (∇ϕ)(γ∗(−h, x)) · ∂

∂xn
γ∗(−h, x)

)
,

and for j = 1, . . . , n,

∂

∂xj
γ∗(−h, x) =

(
∂

∂xj
γ∗1(−h, x), . . . , ∂

∂xj
γ∗n(−h, x)

)
.

Since (d/dt)γ∗i (t, x) = v∗i (γ∗(t, x)), then as before,

γ∗i (−h, x) = xi +
∫ −h

0

v∗i (γ∗(s, x)) ds and

∂

∂xj
γ∗i (−h, x) = δij +

∫ −h

0

(∇v∗i )(γ∗(s, x)) · ∂

∂xj
γ∗(s, x) ds.

Collecting estimates, we obtain the formula

∇[ϕ(γ∗(−h, x))] = (∇ϕ)(γ∗(−h, x)) + D̃∗(−h, x)(∇ϕ)(γ∗(−h, x)), (3.4)

where D̃(t, x) is the transpose of the matrix D(t, x) in (2.7) and D̃∗ is its analogue with γ∗, V ∗

in place of γ, V .
Let us now further specify the support of ϕ. Choose open sets Ω′′,Ω′′′ depending on Ω′

with Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω′′′ ⊂⊂ Ω and let ϕ be supported in Ω′′. Substituting (3.4) in the first
integral on the left side of (3.2) shows that the left side of (3.2) equals

− 1
h

∫

Ω

Q(x)∇u(x) · (∇ϕ)(γ∗(−h, x)) dx

− 1
h

∫

Ω

Q(x)∇u(x) · D̃∗(−h, x)(∇ϕ)(γ∗(−h, x)) dx

+
1
h

∫

Ω

Q(x)∇u(x) · ∇ϕ(x) dx.

In the first integral here, let x = γ∗(h, z) and use the fact that γ∗(−h, γ∗(h, z)) = z to rewrite
the expression as

− 1
h

∫

Ω

Q(γ∗(h, z))(∇u)(γ∗(h, z)) · ∇ϕ(z)
{
1 +O(h)

}
dz

− 1
h

∫

Ω

Q(x)∇u(x) · D̃∗(−h, x)(∇ϕ)(γ∗(−h, x)) dx

+
1
h

∫

Ω

Q(x)∇u(x) · ∇ϕ(x) dx.

Note that the domain of integration in the first term remains Ω if h is small due to the support
of ϕ. The domains may also be replaced by Ω′′′ if h is small enough depending on Ω′′,Ω′′′.
Furthermore, if h is small enough (depending on Ω′′′), then γ∗(s, x) = γ(s, x) for all x ∈ Ω′′′ and



Smoothness of the Gradient of Weak Solutions of Degenerate Linear Equations 53

all s with |s| ≤ |h|. If h satisfies these restrictions, we can drop all asterisks above, obtaining
the equivalent expression

− 1
h

∫

Ω

(√
Q∇u)(γ(h, z)) · (

√
Q(γ(h, z)) −

√
Q(z)

)∇ϕ(z)
{
1 +O(h)

}
dz

− 1
h

∫

Ω

(√
Q∇u)(γ(h, z)) · (

√
Q∇ϕ)

(z)
{
1 +O(h)

}
dz

− 1
h

∫

Ω

Q(x)∇u(x) · D̃(−h, x)(∇ϕ)(γ(−h, x)) dx

+
1
h

∫

Ω

(√
Q∇u)(z) · (

√
Q∇ϕ)

(z) dz.

Regrouping in the second and fourth terms and recalling (3.3), we may rewrite (3.2) as

I =:
∫

Ω

Δh
(√

Q∇u)(z) · (
√
Q∇ϕ)

(z) dz

−
∫

Ω

(√
Q∇u)(γ(h, z)) · (Δh

√
Q

)
(z)∇ϕ(z)

{
1 +O(h)

}
dz

− 1
h

∫

Ω

(√
Q∇u)(γ(h, z)) · (

√
Q∇ϕ)

(z)O(h) dz

− 1
h

∫

Ω

(√
Q∇u)(x) ·

√
Q(x)D̃(−h, x)(∇ϕ)(γ(−h, x)) dx

−
[ ∫

Ω

(
Δhb

)
(x)ϕ(x) dx+

∫

Ω

b(γ(h, x))ϕ(x)O(1) dx
]

= II + III + IV + V, (3.5)

with constants independent of h and x in the O(h), O(1) factors if |h| < δ(Ω′, V ).
Now let {uk}∞k=1 be a sequence of smooth functions representing (u,∇u) in W 1,2

Q (Ω), and
let η be a smooth cutoff function supported in Ω′′ and equal to 1 on Ω′. Choose ϕ(x) =
η(x)2(Δhuk)(x) for each k, with the understanding that h is small enough (depending on Ω′)
that γ(x, h) ∈ Ω if η(x) �= 0. Then

∇ϕ(x) = η(x)2∇(Δhuk)(x) + (Δhuk)(x) 2η(x)∇η(x)
and

∇(Δhuk)(x) =
∇[uk(γ(h, x))] −∇uk(x)

h

=
1
h

{
(∇uk)(γ(h, x)) + D̃(h, x)(∇uk)(γ(h, x))−∇uk(x)

}

= (Δh∇uk)(x) +
1
h
D̃(h, x)(∇uk)(γ(h, x)).

Combining these formulas gives

∇ϕ(x) = η(x)2(Δh∇uk)(x) + η(x)2
1
h
D̃(h, x)(∇uk)(γ(h, x))

+ (Δhuk)(x) 2η(x)∇η(x). (3.6)

Hence,
(√

Q∇ϕ)
(x) = η(x)2

√
Q(x)(Δh∇uk)(x)

+ η(x)2
√
Q(x)

1
h
D̃(h, x)(∇uk)(γ(h, x)) + (Δhuk)(x) 2η(x)

(√
Q∇η)(x).
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We will use this to rewrite I. First note that
√
Q(x)(Δh∇uk)(x) =

1
h

√
Q(x)(∇uk)(γ(h, x)) − 1

h

(√
Q∇uk

)
(x)

= Δh
(√

Q∇uk

)
(x) − Δh

(√
Q

)
(x)(∇uk)(γ(h, x))

by adding and subtracting 1
h

(√
Q∇uk

)
(γ(h, x)). Substituting this identity into the first term

on the right in the previous formula for
(√
Q∇ϕ)

(x) gives
(√

Q∇ϕ)
(x) = η(x)2Δh

(√
Q∇uk

)
(x) − η(x)2Δh

(√
Q

)
(x)(∇uk)(γ(h, x))

+ η(x)2
√
Q(x)

1
h
D̃(h, x)(∇uk)(γ(h, x)) + (Δhuk)(x) 2η(x)

(√
Q∇η)(x). (3.7)

Therefore, in addition to (3.5) we have the formula

I =
∫

Ω

Δh
(√

Q∇u)(x) · η(x)2Δh
(√

Q∇uk

)
(x) dx

−
∫

Ω

Δh
(√

Q∇u)(x) · η(x)2Δh
(√

Q
)
(x)(∇uk)(γ(h, x)) dx

+
∫

Ω

Δh
(√

Q∇u)(x) · η(x)2
√
Q(x)

1
h
D̃(h, x)(∇uk)(γ(h, x)) dx

+
∫

Ω

Δh
(√

Q∇u)(x) · (Δhuk)(x) 2η(x)
(√

Q∇η)(x) dx

= I1 + I2 + I3 + I4. (3.8)

Note that limk→∞ I1 equals
∫

Ω

∣
∣Δh

(√
Q∇u)(x)∣∣2 η(x)2dx ≥

∫

Ω′

∣
∣Δh

(√
Q∇u)(x)∣∣2dx (3.9)

since η = 1 on Ω′. Therefore, by the strategy outlined near the beginning of the section, it
will be enough to show that the lim supk→∞ of the absolute value of each of I2, I3, I4 and II,
III, IV, V (with ϕ = η2Δhuk in II, III, IV, V) is dominated by terms that can be absorbed
into the integral on the left (or right) side of (3.9) or are bounded in h. Assumption (1.7) in
Theorem 1.1 helps to accomplish this. The hypothesis that

√
Q ∈ C1,1(Ω) is used heavily in

estimating II.
The remaining computations are lengthy and postponed until the next section.

4 The Remainder of the Proof of Theorem 1.1

This section is devoted to completing the proof of Theorem 1.1. It remains to derive the
estimates mentioned at the end of Section 3 for I2, I3, I4 and II, III, IV, V. Recall that the
function ϕ in II, III, IV, V is always ϕ = η2Δhuk where {uk} is a sequence of Lipschitz functions
representing u in W 1,2

Q (Ω). The number of estimates is large, but some of the computations are
similar to one another. The assumption that

√
Q ∈ C1,1(Ω) is used to estimate II. We begin

with a fact about Lipschitz continuity in t of integral curves γ(t, x).

Lemma 4.1 Let V (x) be a Lipschitz vector field in Ω and γ(t, x) = γ(V, t, x). If J is an
interval in R such that γ(t, x) is defined for all t ∈ J and |J | ‖V ‖Lip(Ω) ≤ 1

2 , then for all
t1, t2 ∈ J ,

|γ(t1, x) − γ(t2, x)| ≤
∫

J

|V (γ(t, x))| dt ≤ 2|J |min
t∈J

|V (γ(t, x))|. (4.1)



Smoothness of the Gradient of Weak Solutions of Degenerate Linear Equations 55

Proof Let t1, t2 ∈ J . The first inequality in (4.1) is true because

|γ(t1, x) − γ(t2, x)| =
∣
∣
∣∣

∫ t1

t2

γ′(t, x) dt
∣
∣
∣∣ ≤

∫

J

|V (γ(t, x))| dt.

For any t0 ∈ J ,
∫

J

|V (γ(t, x))| dt ≤
∫

J

|V (γ(t, x)) − V (γ(t0, x))| dt+ |J | |V (γ(t0, x))|

≤
∫

J

‖V ‖Lip(Ω)|γ(t, x) − γ(t0, x)| dt+ |J | |V (γ(t0, x))|

≤
∫

J

‖V ‖Lip(Ω)

∫

J

|V (γ(s, x))| ds dt+ |J | |V (γ(t0, x))|,

where we have used the first inequality in (4.1). The last sum equals

|J | ‖V ‖Lip(Ω)

∫

J

|V (γ(s, x))| ds+ |J | |V (γ(t0, x))|,

and by subtracting its first summand from
∫

J
|V (γ(t, x))| dt and using the assumption that

|J | ‖V ‖Lip(Ω) ≤ 1/2, we obtain
∫

J

|V (γ(t, x))| dt ≤ 2|J | |V (t0, x)|.

Since t0 is an arbitrary point of J , the second inequality in (4.1) follows, completing the proof
of the lemma.

Next we list some corollaries of Lemma 4.1.

Lemma 4.2 Let V , γ(t, x) and J be as in Lemma 4.1. If F : Ω → R
k is a Lipschitz vector in

R
k, then for all t1, t2 ∈ J ,

∣
∣F (γ(t1, x)) − F (γ(t2, x))

∣
∣ ≤ ‖F‖Lip(Ω)2|J |min

t∈J
|V (γ(t, x))|, (4.2)

1
|J |

∫

J

∣
∣F (γ(t, x))

∣
∣dt ≤ min

t∈J

∣
∣F (γ(t, x))

∣
∣ + ‖F‖Lip(Ω)2|J |min

t∈J
|V (γ(t, x))|. (4.3)

Proof It suffices to prove (4.2), since (4.3) then follows by integration. Since
∣
∣F (γ(t1, x)) − F (γ(t2, x))

∣
∣ ≤ ‖F‖Lip(Ω)|γ(t1, x) − γ(t2, x)|,

(4.2) follows by applying (4.1).

We also record an obvious analogue of (4.2) for matrices: If M(x) is a Lipschitz matrix on
Ω mapping R

n into R
k, and if V, γ and J are as in Lemma 4.1, then for all t1, t2 ∈ J and all

ξ ∈ R
n,

∣∣M(γ(t1, x))ξ −M(γ(t2, x))ξ
∣∣ ≤ ‖M‖Lip(Ω)2|J |min

t∈J
|V (γ(t, x))| |ξ|. (4.4)

Here, the notation ‖M‖Lip(Ω) means for example the sum of the Lipschitz constants on Ω of
the row vectors of M .

A typical application of (4.4) that will help to estimate I2 is
∣
∣(Δh

√
Q

)
(x)∇uk(γ(h, x))

∣
∣ ≤ C

∥
∥
√
Q

∥
∥

Lip(Ω)
|V (γ(h, x))| |∇uk(γ(h, x))|, (4.5)
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with C independent of x and small h. In fact,
∣∣(Δh

√
Q

)
(x)∇uk(γ(h, x))

∣∣ =
∣
∣∣
∣
1
h

{√
Q(γ(h, x)) −

√
Q(x)

}∇uk(γ(h, x))
∣
∣∣
∣

≤ ∥∥
√
Q

∥∥
Lip(Ω)

C
|h|
|h| |V (γ(h, x))| |∇uk(γ(h, x))| by (4.4) with ξ = γ(h, x).

Therefore (see (3.8)),

|I2| ≤ C

∫

Ω

∣∣Δh
(√

Q∇u)(x)∣∣ η(x)2 |V (γ(h, x))| |∇uk(γ(h, x))| dx

≤ Cε

∫

Ω

∣
∣Δh

(√
Q∇u)(x)∣∣2η(x)2dx+ C

1
ε

∫

Ω

|V (γ(h, x))|2|∇uk(γ(h, x))|2η(x)2dx

for any ε > 0. By picking ε small, the first term in the last expression can be absorbed into
the integral on the right side of (3.9). The second term, after making the change of variables
z = γ(h, x), is bounded for small h by

C

∫

Ω

|V (z)|2|∇uk(z)|2dz, (4.6)

whose lim supk→∞ is at most (lim supk→∞ Sk)2 with Sk as in (1.6).
Next let us estimate |I4|. By (3.8), with η fixed,

|I4| ≤ C

∫

Ω

∣
∣Δh

(√
Q∇u)(x)∣∣ |η(x)| |(Δhuk)(x)| dx

≤ Cε

∫

Ω

∣∣Δh
(√

Q∇u)(x)∣∣2η(x)2dx+ C
1
ε

∫

Ω′′
|(Δhuk)(x)|2dx.

The first integral immediately above can be absorbed into the integral on the left in (3.9). The
second one is bounded by a multiple of ‖√Q∇uk‖2

L2(Ω) by Lemma 2.1, and so its lim supk→∞
is at most C(lim supk→∞ Sk)2.

We now turn to estimating |I3|. Note that for any ε > 0,

|I3| ≤ ε

∫

Ω

∣
∣Δh

(√
Q∇u)(x)∣∣2η(x)2dx+ C

1
ε

∫

Ω′′

∣
∣
∣∣
√
Q(x)

1
h
D̃(h, x)

(∇uk

)
(γ(h, x))

∣
∣
∣∣

2

dx. (4.7)

If ε is small, the first integral on the right side can again be absorbed. In order to find a suitable
upper bound for the second integral on the right, we apply (2.4) to obtain

∣
∣
∣∣
∂

∂xi
γ(t, x)

∣
∣
∣∣ ≤ 2 if x ∈ Ω′′ and |t| < cV,Ω′′ ,

and therefore (see (2.7))
∥
∥
∥∥

1
h
D̃(h, x)

∥
∥
∥∥

op

≤ C for x ∈ Ω′′ and |h| < cV,Ω′′ . (4.8)

In our estimates, constants that depend on Ω′′ are determined ultimately by Ω′. Write
√
Q(x)

1
h
D̃(h, x)

(∇uk

)
(γ(h, x))

=
{√

Q(x) −
√
Q(γ(h, x))

} 1
h
D̃(h, x)

(∇uk

)
(γ(h, x))

+
√
Q(γ(h, x))

1
h
D̃(h, x)

(∇uk

)
(γ(h, x)) = T1 + T2. (4.9)
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Consider T2 first. By (4.8),

|T2| ≤ C
∥
∥
√
Q(γ(h, x))

∥
∥

op

∣
∣(∇uk

)
(γ(h, x))

∣
∣.

The contribution of T2 to the second integral in (4.7), namely its contribution to the integral
∫

Ω′′

∣∣
∣
∣
√
Q(x)

1
h
D̃(h, x)

(∇uk

)
(γ(h, x))

∣∣
∣
∣

2

dx, (4.10)

is then at most
C

∫

Ω′′

∥∥
√
Q(γ(h, x))

∥∥2

op

∣∣(∇uk

)
(γ(h, x))

∣∣2dx.

The change of variables z = γ(h, x) shows that this is bounded (for small h) by

C

∫

Ω

∥
∥
√
Q(x)

∥
∥2

op

∣
∣∇uk(x)

∣
∣2dx. (4.11)

Since ‖√Q(x)‖op ≤ C
∑

� |w�(x)|, where {w�}� are the entries of
√
Q, the lim supk→∞ of (4.11)

is at most C(lim supk→∞ Sk)2.
In order to estimate the part of (4.10) corresponding to T1, namely

∫
Ω′′ |T1|2dx, note by

(4.4) that

|T1| ≤ C‖
√
Q‖Lip(Ω)|h| |V (γ(h, x))|

∥
∥
∥∥

1
h
D̃(h, x)

∥
∥
∥∥

op

∣
∣(∇uk

)
(γ(h, x))

∣
∣.

≤ C|h| |V (γ(h, x))| ∣∣(∇uk

)
(γ(h, x))

∣
∣.

Therefore, by changing variables as usual, we obtain
∫

Ω′′
|T1|2dx ≤ Ch2

∫

Ω

|V (x)|2|∇uk(x)|2dx, (4.12)

another estimate whose lim supk→∞ is bounded as above for small h.
It remains to estimate II, III, IV, V (see (3.5) in case ϕ(x) = η(x)2(Δhuk)(x). Except for

II, whose estimation will involve a novelty related to second differences, most of the arguments
needed will be similar to ones already used. We begin with III. By (3.5),

|III| ≤ C

∫

Ω

∣∣(
√
Q∇u)(γ(h, z)) · (

√
Q∇ϕ)

(z)
∣∣ dz.

Using formula (3.7) to rewrite
(√
Q∇ϕ)

(z), it follows that if ε > 0, then

|III| ≤ C
1
ε

∫

Ω

∣∣(
√
Q∇u)(γ(h, z))∣∣2η(z)2dz + Cε

∫

Ω

∣∣Δh
(√

Q∇uk

)
(z)

∣∣2η(z)2dz

+ C

(∫

Ω

∣
∣(

√
Q∇u)(γ(h, z))∣∣2η(z)2dz

) 1
2
( ∫

Ω′′

∣
∣Δh

(√
Q

)
(z)(∇uk)(γ(h, z))

∣
∣2dz

) 1
2

+ C

(∫

Ω

∣
∣(

√
Q∇u)(γ(h, z))∣∣2η(z)2dz

) 1
2
( ∫

Ω′′

∣∣
∣∣
√
Q(z)

D̃(h, z)
h

(∇uk)(γ(h, z))
∣∣
∣∣

2

dz

) 1
2

+ C

(∫

Ω

∣
∣(

√
Q∇u)(γ(h, z))∣∣2η(z)2dz

) 1
2
( ∫

Ω′′

∣
∣(Δhuk)(z) 2η(z)

(√
Q∇η)(z)∣∣2dz

) 1
2

.

By the usual change of variables, the first term on the right side above is at most a constant
times ‖√Q∇u‖2

L2(Ω) ≤ (lim supk→∞ Sk)2, and the limit as k → ∞ of the second term can be
absorbed as usual provided ε is chosen to be small. For each of the last three terms, we have
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already noted that the first factor is bounded by C lim supk→∞ Sk, and the corresponding second
factors have been estimated in the arguments for I2, I3 and I4 respectively. This completes our
estimation of III.

In order to estimate term II in (3.5), apply Δh
√
Q to formula (3.6) to obtain

(
Δh

√
Q

)
(z)∇ϕ(z) = η(z)2

(
Δh

√
Q

)
(z)(Δh∇uk)(z)

+ η(z)2
(
Δh

√
Q

)
(z)

1
h
D̃(h, z)

(∇uk

)
(γ(h, z))

+
(
Δhuk

)
(z)2η(z)

(
Δh

√
Q

)
(z)∇η(z),

and in the first term on the right side of this equation, rewrite

(
Δh

√
Q

)
(z)(Δh∇uk)(z) =

1
h

√
Q(γ(h, z)) − √

Q(z)
h

(∇uk

)
(γ(h, z))

− 1
h

√
Q(γ(h, z)) − √

Q(z)
h

∇uk(z).

Combining equalities gives a representation of II as four integrals:

−II =
∫

Ω

(√
Q∇u)(γ(h, z)) · η(z)2

× 1
h

(√
Q(γ(h, z)) − √

Q(z)
h

)
(∇uk

)
(γ(h, z)) {1 +O(h)}dz

−
∫

Ω

(√
Q∇u)(γ(h, z)) · η(z)2 1

h

(√
Q(γ(h, z)) − √

Q(z)
h

)
∇uk(z) {1 +O(h)}dz

+
∫

Ω

(√
Q∇u)(γ(h, z)) · η(z)2(Δh

√
Q

)
(z)

1
h
D̃(h, z)

(∇uk

)
(γ(h, z)) {1 +O(h)} dz

+
∫

Ω

(√
Q∇u)(γ(h, z)) · (Δhuk

)
(z)2η(z)

(
Δh

√
Q

)
(z)∇η(z) {1 +O(h)} dz.

Of these four terms, we will consider only the first two since the sizes of the last two can
be estimated easily by using Hölder’s inequality and earlier estimates. The first two are very
similar in form. The difficulty in estimating them is due to the presence of a combined power
h2 in the denominators of their integrands. Each of the first two integrals generates two similar
integrals, one arising from the “1” in the factor 1+O(h) and the other arising from the “O(h)”.
We may consider only the two integrals associated with 1’s since in the two associated with
O(h)’s, there is partial cancellation of the power h2 in the denominator, again allowing us to
apply Hölder’s inequality and earlier estimates. The two integrals with 1’s contribute

∫

Ω

(√
Q∇u)(γ(h, z)) · η(z)2 1

h

(√
Q(γ(h, z)) − √

Q(z)
h

)
(∇uk

)
(γ(h, z)) dz (4.13)

−
∫

Ω

(√
Q∇u)(γ(h, z)) · η(z)2 1

h

(√
Q(γ(h, z)) − √

Q(z)
h

)
∇uk(z) dz. (4.14)

These will be combined rather than considered separately. Leaving the second one as is, we
change variables z = γ(−h, x), or equivalently x = γ(h, z), in (4.13) and rewrite it as

∫

Ω

(√
Q∇u)(z) · η(γ(−h, z))2 1

h

(√
Q(z) − √

Q(γ(−h, z))
h

)
∇uk(z) {1 +O(h)} dz.
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Here, we may as before ignore the O(h) part of the factor 1 +O(h). Similarly, we may replace
η(γ(−h, z))2 in the integrand by η(z)2 since η(γ(−h, z))2 − η(z)2 = O(h). By combining the
result with (4.14), our task becomes to estimate the difference

∫

Ω

(√
Q∇u)(z) · η(z)2 1

h

(√
Q(z) − √

Q(γ(−h, z))
h

)
∇uk(z) dz

−
∫

Ω

(√
Q∇u)(γ(h, z)) · η(z)2 1

h

(√
Q(γ(h, z)) − √

Q(z)
h

)
∇uk(z) dz.

To this difference, we subtract and add the integral
∫

Ω

(√
Q∇u)(z) · η(z)2 1

h

(√
Q(γ(h, z)) − √

Q(z)
h

)
∇uk(z) dz

and then regroup terms to obtain
∫

Ω

(√
Q∇u)(z) · η(z)2 2

√
Q(z) − √

Q(γ(h, z)) − √
Q(γ(−h, z))

h2
∇uk(z) dz

−
∫

Ω

Δh
(√

Q∇u)(z) · η(z)2(Δh
√
Q

)
(z)∇uk(z) dz. (4.15)

Of these two integrals, it is enough to estimate the first one since the other one can be estimated
by using an argument of ε, ε−1 type as usual (cf. the argument for I2).

The entries of the matrix
√
Q(γ(h, z)) +

√
Q(γ(−h, z)) − 2

√
Q(z)

h2

are second differences
f(h) + f(−h) − 2f(0)

h2
, (4.16)

where f(h) = f(h, z) = w(γ(h, z)) and w is a generic entry of
√
Q. We have

f(h) − f(0) =
∫ h

0

f ′(t) dt,

f(−h) − f(0) =
∫ −h

0

f ′(t) dt = −
∫ h

0

f ′(t− h) dt,

f(h) + f(−h) − 2f(0) =
∫ h

0

[
f ′(t) − f ′(t− h)

]
dt.

Since
f ′(t) = (∇w)(γ(t, z)) · γ′(t, z) = (∇w)(γ(t, z)) · V (γ(t, z)),

then

f ′(t) − f ′(t− h) = (∇w)(γ(t, z)) · V (γ(t, z)) − (∇w)(γ(t− h, z)) · V (γ(t− h, z))

= (∇w)(γ(t, z)) · {V (γ(t, z)) − V (γ(t− h, z))
}

+
{
(∇w)(γ(t, z)) − (∇w)(γ(t− h, z))

} · V (γ(t− h, z)).

Hence, by Lemma 4.2, since ∇w is Lipschitz continuous and |t| ≤ |h| and h is small,

|f ′(t) − f ′(t− h)| ≤ |(∇w)(γ(t, z))| ‖V ‖Lip(Ω)2|h| |V (z)|
+ ‖∇w‖Lip(Ω)2|h| |V (z)| |V (γ(t− h, z))|

= O(h) |V (z)|.
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Therefore,
∣
∣∣
∣
f(h) + f(−h) − 2f(0)

h2

∣
∣∣
∣ =

1
h2

∣
∣∣
∣

∫ h

0

[
f ′(t) − f ′(t− h)

]
dt

∣
∣∣
∣

≤ 1
h2

|h|O(h) |V (z)| ≤ C|V (z)|.
Applying Schwarz’s inequality to the first integral in (4.15) shows that its absolute value is at
most a constant times

‖
√
Q∇u‖L2(Ω)

(∫

Ω′′

∣∣
∣
∣
2
√
Q(z) − √

Q(γ(h, z)) − √
Q(γ(−h, z))

h2
∇uk(z)

∣∣
∣
∣

2

dz

) 1
2

≤ C‖
√
Q∇u‖L2(Ω)

(∫

Ω

|V (z)|2|∇uk(z)|2dz
) 1

2

, (4.17)

with C depending on the sum of the Lipschitz constants of w� and ∇w� (where {w�} are the
entries of

√
Q) and on ‖V ‖L∞(Ω). Estimate (4.17) is independent of h and its lim supk→∞ is

bounded by the right side of (1.8).
Next, let us derive an estimate for IV (see (3.5)) in case ϕ(x) = η(x)2

(
Δhuk)(x). We will

be brief since similar techniques have appeared earlier. As usual (see (3.6)),

∇ϕ(z) = η(z)2
1
h

(∇uk

)
(γ(h, z)) − η(z)2

1
h
∇uk(z)

+ η(z)2
1
h
D̃(h, z)

(∇uk

)
(γ(h, z)) +

(
Δhuk

)
(z)2η(z)∇η(z).

Setting z = γ(−h, x) in this formula and noting that γ(h, γ(−h, x)) = x and that
(
Δhuk

)
(γ(−h, x)) =

(
Δ−huk

)
(x),

we obtain
(∇ϕ)

(γ(−h, x)) = η(γ(−h, x))2 1
h
∇uk(x) − η(γ(−h, x))2 1

h

(∇uk

)
(γ(−h, x))

+ η(γ(−h, x))2 1
h
D̃(h, γ(−h, x))∇uk(x)

+
(
Δ−huk

)
(x)2η(γ(−h, x))(∇η)(γ(−h, x)).

Denoting M(x) = Mh(x) =
√
Q(x)D̃(−h, x)/h, we may then rewrite IV in terms of four

integrals:

−IV =
∫

Ω

(√
Q∇u)(x) ·M(x)η(γ(−h, x))2 1

h
∇uk(x) dx

−
∫

Ω

(√
Q∇u)(x) ·M(x)η(γ(−h, x))2 1

h

(∇uk

)
(γ(−h, x)) dx

+
∫

Ω

(√
Q∇u)(x) ·M(x)η(γ(−h, x))2 1

h
D̃(h, γ(−h, x))∇uk(x) dx

+
∫

Ω

(√
Q∇u)(x) · (Δ−huk

)
(x)2η(γ(−h, x))M(x)(∇η)(γ(−h, x)) dx

= IV1 + IV2 + IV3 + IV4.

In order to estimate IV4, it will be enough to use the simple fact that the entries of M(x)
are bounded in x and h. Then Schwarz’s inequality implies that if h is small, IV4 is at most a



Smoothness of the Gradient of Weak Solutions of Degenerate Linear Equations 61

constant times

‖
√
Q∇u‖L2(Ω)‖Δ−huk‖L2(Ω′′′) ≤ C‖

√
Q∇u‖L2(Ω)‖

√
Q∇uk‖L2(Ω),

where we have also applied Lemma 2.1. The lim supk→∞ is at most C(lim supk→∞ Sk)2.
Term IV3 can also be estimated easily by using Schwarz’s inequality and the sort of com-

putations used for I3 (see for example (4.10)).
The expression IV1 + IV2 will be estimated as a single entity. After setting z = γ(−h, x) in

IV2, we obtain

IV1 + IV2 =
1
h

∫

Ω

(√
Q∇u)(x) · η(γ(−h, x))2M(x)∇uk(x) dx

− 1
h

∫

Ω

(√
Q∇u)(γ(h, x)) · η(x)2M(γ(h, x))∇uk(x) {1 +O(h)}dx.

The idea of the remaining computation is to combine the vector h−1
(√
Q∇u)(x) from IV1 with

the vector −h−1
(√
Q∇u)(γ(h, x)) from IV2 to obtain −Δh

(√
Q∇u)(x) and then to apply the

usual absorption technique involving ε, ε−1. For this to work well, the matrix η(γ(−h, x))2M(x)
in IV1 and the matrix η(x)2M(γ(h, x)) in IV2 must be replaced by a coincident matrix, namely
η(x)2M(x), and the integral that arises from the O(h) part of 1+O(h) in IV2 must be estimated
separately. In fact, the integral that arises from the O(h) part of IV2 is easy by itself because
the O(h) factor cancels h−1 and then Schwarz’s inequality and arguments related to (4.10)
yield familiar size estimates; recall that M(x) =

√
Q(x)D̃(−h, x)/h while the similar matrix√

Q(x)D̃(h, x)/h was considered earlier.
In order to replace both matrices η(γ(−h, x))2M(x) and η(x)2M(γ(h, x)) by the same ma-

trix η(x)2M(x), we subtract and add η(x)2M(x) to the matrices in both integrals. In the
integrand of the first integral, this produces the extra matrix

(
η(γ(−h, x))2 − η(x)2

)
M(x) = O(h)M(x),

which due to cancellation of powers of h yields an integral that can again be estimated by
using arguments related to (4.10). On the other hand, in the integrand of the second integral,
we obtain the extra matrix η(x)2{M(γ(h, x)) −M(x)}, whose operator norm is bounded by
a multiple of |h| |V (x)| since the entries of M are Lipschitz continuous. Due to cancellation
of powers of h, the resulting integral is easy to estimate by Schwarz’s inequality and has the
familiar bound

C‖
√
Q∇u‖L2(Ω)‖|V | ∇uk‖L2(Ω).

This completes our estimation of all four parts of IV.
To estimate the size of term V, recall from (3.5) that

−V =
∫

Ω

(
Δhb

)
(x)ϕ(x) dx+

∫

Ω

b(γ(h, x))ϕ(x)O(1) dx.

Since ϕ = η(x)2
(
Δhuk

)
(x) with h small, Schwarz’s inequality yields

|V| ≤ C‖Δhb‖L2(Ω)‖Δhuk‖L2(Ω) + C‖b‖L2(Ω)‖Δhuk‖L2(Ω)

≤ C‖b‖W 1,2
Q (Ω)‖

√
Q∇uk‖L2(Ω) (by Lemma 2.1).

The last expression has lim supk→∞ bounded by the right side of (1.8). This completes the
estimates needed to prove Theorem 1.1, and the theorem now follows by collecting them.
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