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Universidade de Lisboa, 1049–001 Lisboa, Portugal

E-mail : cvalls@math.ist.utl.pt

Abstract In this paper, we study a new class of quadratic systems and classify all its phase portraits.

More precisely, we characterize the class of all quadratic polynomial differential systems in the plane

having a complex ellipse x2 + y2 + 1 = 0 as invariant algebraic curve. We provide all the different

topological phase portraits that this class exhibits in the Poincaré disc.
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1 Introduction and Statement of the Main Results

A planar polynomial differential system is a differential system of the form

ẋ = P (x, y),

ẏ = Q(x, y),
(1.1)

where P and Q are real polynomials. The polynomial differential system (1.1) has degree n, if
n is the maximum of the degrees of the polynomials P and Q. A polynomial differential system
of degree 2 is called simply a quadratic system. The dot in system (1.1) denotes the derivative
with respect to the independent variable t.

Many families of quadratic systems have been studied, and for them all the possible global
topological phase portraits have been classified. One of the first of these classes studied was the
classification of the quadratic centers and their first integrals which started with the works of
Dulac [6], Kapteyn [9, 10], Bautin [3], Lunkevich and Sibirskii [14], Schlomiuk [22], Żo�la̧dek [26],
Ye and Ye [25], Artés, Llibre and Vulpe [2], . . . . The class of the homogeneous quadratic
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systems, see Lyagina [15], Markus [16], Korol [11], Sibirskii and Vulpe [23], Newton [19], Date [5]
and Vdovina [24], . . . . Another class is the one formed by the Hamiltonian quadratic systems,
see Artés and Llibre [1], Kalin and Vulpe [8], and Artés, Llibre and Vulpe [2].

In this paper, we want to study a new class of quadratic systems and classify all its phase
portraits. More precisely we analyze the class of all quadratic polynomial differential systems
having a complex invariant ellipse, that after an affine transformation it can be written as

x2 + y2 + 1 = 0.

The family of quadratic systems having a real invariant ellipse has been studied by Qin [21] in
1958.

Our first result is to provide a normal form for all quadratic polynomial differential systems
having a complex invariant ellipse

x2 + y2 + 1 = 0

as an invariant algebraic curve.

Proposition 1.1 A planar polynomial differential system of degree 2 having a complex invari-
ant ellipse x2 +y2 +1 = 0 as an invariant algebraic curve, after an affine change of coordinates,
can be written as

ẋ = α(x2 + y2 + 1) + y(ax + by + c),

ẏ = −x(ax + by + c),
(1.2)

where α, a, b, c ∈ R.

The proof of Proposition 1.1 is the same as the proof of the normal form of the quadratic
system with a real invariant ellipse, see for more details the normal form given in system (12)
of [13].

In the next theorem we present the topological classification of all the phase portraits in the
Poincaré disc of planar polynomial differential systems of degree 2 having a complex invariant
ellipse

x2 + y2 + 1 = 0

as an invariant algebraic curve. For a definition of the Poincaré compactification, the Poincaré
disc and of topological equivalent phase portraits of a polynomial differential system in the
Poincaré disc, see Section 2.

It is known that if a quadratic system has a limit cycle this surrounds a focus, see for more
details [4]. Due to this fact we shall see that such quadratic systems have no limit cycles.

Theorem 1.2 Given a planar polynomial differential system of degree 2 having a complex
ellipse x2 +y2 +1 = 0 as an invariant algebraic curve its phase portrait is topological equivalent
to one of the L phase portraits of Figure 1.

Theorem 1.2 is proved in Section 3.
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Figure 1 Phase portraits in the Poincaré disc of the quadratic systems having an invariant complex

ellipse

2 Basic Results

2.1 Poincaré Compactification

The planar polynomial vector field of degree n associated to the polynomial differential sys-
tem (1.1) of degree n is

X = P (x, y)
∂

∂x
+ Q(x, y)

∂

∂y
.

The Poincaré compactified vector field p(X ) associated to X is an analytic vector field on S
2

constructed as follows (see, for more details Chapter 5 of [7]).
Let S

2 = {y = (y1, y2, y3) ∈ R
3 : y2

1 + y2
2 + y2

3 = 1} (the Poincaré sphere) and TyS
2 be the
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tangent plane to S
2 at point y. The tangent plane T(0,0,1)S

2 is identified with the plane R
2 where

we have the polynomial vector field X . Consider the central projections f± : T(0,0,1)S
2 → S

2.
These two maps define two copies of X , one X+ in the northern hemisphere and the other X−

in the southern hemisphere. Denote by X ′ = X+ ∪X− the vector field defined on S
2 except on

its equator S
1 = {y ∈ S

2 : y3 = 0}. The infinity of R
2 is identified with the equator S

1. The
extension of X ′ to a vector field P (X ) on S

2 (including S
1) is the unique analytic extension of

yn−1
3 X ′ to S

2. Knowing the behaviour of p(X ) in a neighborhood of S
1, we know the behaviour

of X near the infinity. The Poincaré compactification is such that S
1 is invariant under the flow

of p(X ).
The Poincaré disc, denoted by D, is the projection of the closed northern hemisphere of S

2

on y3 = 0 under (y1, y2, y3) �→ (y1, y2).
Two polynomial vector fields X and Y on R

2 are topologically equivalent if there is a home-
omorphism on S

2 carrying orbits of the flow induced by p(X ) into orbits of the flow induced
by p(Y), preserving the infinity S

1 and preserving or reversing simultaneously the sense of all
orbits.

We consider the six local charts Ui = {y ∈ S
2 : yi > 0}, and Vi = {y ∈ S

2 : yi <

0} where i = 1, 2, 3; and the diffeomorphisms Fi : Ui → R
2 and Gi : Vi → R

2 for i =
1, 2, 3 (which are the inverses of the central projections from the planes tangent at the points
(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1) respectively in order to study the
sphere S

2 which is a differentiable manifold). If we denote by (u, v) the value of Fi(y) or Gi(y)
for any i = 1, 2, 3 (so (u, v) represents different things according to the local charts under
consideration), then we get for p(X ) the following expressions:

vnΔ(u, v)
(

Q

(
1
v
,
u

v

)
− uP

(
1
v
,
u

v

)
,−vP

(
1
v
,
u

v

))
in U1, (2.1)

vnΔ(u, v)
(

P

(
u

v
,

1
v

)
− uQ

(
u

v
,

1
v

)
,−vQ

(
u

v
,

1
v

))
in U2, (2.2)

Δ(u, v)(P (u, v), Q(u, v)) in U3,

where Δ(u, v) = (u2+v2+1)−
1
2 (n−1). In what follows we omit the factor Δ(u, v) by rescaling the

vector field p(X ). Thus we obtain a polynomial vector field in each local chart. The expression
for Vi is the same as that for Ui except for a multiplicative factor (−1)n−1. In these coordinates
for i = 1, 2, v = 0 always denotes the points of S

1.

2.2 Separatrices and Canonical Regions

Let p(X ) be the Poincaré compactification in the Poincaré disc D of system (1.1), and let Φ be
its analytic flow. Following Markus [17] and Neumann [18] we denote by (U, Φ) the flow of a
differential system on an invariant set U ⊂ D under the flow Φ. Two flows (U, Φ) and (V, Ψ)
are topologically equivalent if and only if there exists a homeomorphism h : U → V which sends
orbits of the flow Φ into orbits of the flow Ψ either preserving or reversing the orientation of
all the orbits.

A flow (U, Φ) is parallel if it is topologically equivalent to one of the following flows:
(i) The flow defined in R

2 by the differential system ẋ = 1, ẏ = 0, called strip flow.
(ii) The flow defined in R

2 \ {(0, 0)} by the differential system in polar coordinates ṙ = 0,
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θ̇ = 1, called annular flow.
(iii) The flow defined in R

2 \ {(0, 0)} by the differential system in polar coordinates ṙ = r,

θ̇ = 0, called spiral or radial flow.
The separatrices of a vector field p(X ) in the Poincaré disc D are:
(I) all the orbits of p(X ) which are in the boundary S

1 of the Poincaré disc (i.e. at the
infinity of R

2),
(II) all the finite singular points of p(X ),
(III) all the limit cycles of p(X ), and
(IV) all the separatrices of the hyperbolic sectors of the finite and infinite singular points

of p(X ).
The vector fields p(X ), coming from polynomial vector fields (1.1) of R

2 having finitely
many singular points finite and infinite, have finitely many separatrices. For more details see
for instance [12].

Let S be the union of all separatrices of the flow (D, Φ) defined by p(X ) in the Poincaré
disc D. It is easy to check that S is an invariant closed set. If N is a connected component of
D \ S, then N is also an invariant set under the flow Φ of p(X ), and the flow (N, Φ|N ) is called
a canonical region of the flow (D, Φ).

Proposition 2.1 If the number of separatrices of the flow (D, Φ) is finite, then every canonical
region of the flow (D, Φ) is parallel.

For a proof of this proposition see [18] or [12].
The separatrix configuration Sc of a flow (D, Φ) is the union of all the separatrices S of the

flow together with an orbit belonging to each canonical region. The separatrix configuration
Sc of the flow (D, Φ) is topologically equivalent to the separatrix configuration S∗

c of the flow
(D, Φ∗) if there exists an orientation preserving homeomorphism from D to D which transforms
orbits of Sc into orbits of S∗

c , and orbits of S into orbits of S∗.

Theorem 2.2 (Markus–Neumann–Peixoto) Let (D, Φ) and (D, Φ∗) be two compactified Poin-
caré flows with finitely many separatrices coming from two polynomial vector fields (1.1). Then
they are topologically equivalent if and only if their separatrix configurations are topologically
equivalent.

For a proof of this result see [17, 18, 20].
Theorem 2.2 implies that in order to classify the phase portraits in the Poincaré disc of a

planar polynomial differential system having finitely many separatrices finite and infinite, it is
enough to describe their separatrix configuration. This is what we have done in Figure 1.

3 Phase Portraits

It is clear that system (1.2) with α = 0, after a rescaling of the time τ = (ax+ by + c)t becomes

ẋ = y,

ẏ = −x,

whose phase portrait is formed by all the invariant circles centered at the origin of coordinates,
providing the first two phase portraits of Figure 1.
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In what follows we shall study the phase portraits of system (1.2) with α �= 0. Doing the
rescaling of the time τ = αt, and renaming a/α, b/α, c/α again by a, b, c, respectively we have
the quadratic system

ẋ =x2 + y2 + 1 + y(ax + by + c),

ẏ = − x(ax + by + c),
(3.1)

with a, b, c ∈ R.

Remark 3.1 We note that if we do the transformation (x, y, t, c) → (−x,−y,−t,−c) sys-
tem (3.1) remains invariant. Hence, it is enough to consider only the cases in which c ≥ 0.

Remark 3.2 System (3.1) with a = 0 is reversible because it does not change under the
transformation (x, y, t) → (−x, y,−t). Hence we know that the phase portraits of system (3.1)
with a = 0 are symmetric with respect to the y-axis.

The way for studying the phase portraits of systems (3.1) is the following. First we shall
characterize the finite equilibria of those systems together with their local phase portraits. After
we do the same for the infinite equilibria, and finally using this information on the equilibria and
the existence of the invariant complex ellipse x2 + y2 + 1 = 0 we shall provide the classification
of all the phase portraits of systems (3.1).

3.1 The Finite Singular Points

The finite singular points of system (3.1) are characterized in the next result.

Proposition 3.3 System (3.1) has the following finite singular points :
(a) if b = −1 and c �= 0, then

U =
(

0,−1
c

)
;

(b) if b �= −1 and c2 = 4(b + 1), then

V =
(

0,− 1√
b + 1

)
;

(c) if b �= −1 and c2 > 4(b + 1), then

W± =
(

0,−c ± √
c2 − 4(b + 1)

2(b + 1)

)
.

Proof The proof follows easily studying the real solutions of the system x2 + y2 + 1 + y(ax +
by + c) = 0, −x(ax + by + c) = 0. �

We recall that c ≥ 0. Now in the half plane (b, c) we define the regions

R1 = {(b, c) : b < −1, c ≥ 0},
R2 = {(b, c) : b > −1, c > 2

√
b + 1},

R3 = {(b, c) : b > −1, 0 ≤ c < 2
√

b + 1},
the curves

L1 = {(b, c) : b = −1, c �= 0},
L2 = {(b, c) : b > −1, c = 2

√
b + 1},
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and the point P1 = {b = −1, c = 0}.

In view of Proposition 3.3, if the parameters (b, c) of system (3.1) are in R3, then there are
no singular points. Moreover, if the parameters (b, c) of system (3.1) correspond to the point
P1 then again there are no singular points.

From now on we only consider the remaining cases: L1, L2, R1 and R2.

For definitions of elliptic, parabolic and hyperbolic sectors, cusp, and hyperbolic, semi–
hyperbolic and nilpotent singular points see [7].

We introduce some notation that will be used in the following result.

Δ =
√

c2 − 4(b + 1), DW+ = − Δ
2(b + 1)

(c(2 + b) − bΔ),

TW+ =
a(−c − Δ)

2(1 + b)
, DW− =

Δ
2(b + 1)

(c(2 + b) + bΔ),

TW− =
a(−c + Δ)

2(1 + b)
, Dis± = T 2

W± − 4DW± .

(3.2)

Proposition 3.4 System (3.1) has the following finite singular points if its parameters (b, c)
are in

(L1) one singular point U : is a center if a = 0; an unstable hyperbolic node if a2 ≥ 4c2(1+c2)
with a < 0; a stable hyperbolic node if a2 ≥ 4c2(1 + c2) with a > 0; an unstable hyperbolic focus
if a2 < 4c2(1 + c2) with a < 0, and a stable hyperbolic focus if a2 < 4c2(1 + c2) with a > 0.

(L2) one singular point V : is a semi-hyperbolic saddle-node if a �= 0 and a nilpotent cusp
if a = 0.

(R1) two singular points W+ and W− : W+ is a center if a = 0; an unstable hyperbolic node
if a > 0 and Dis+ ≥ 0; a stable hyperbolic node if a < 0 and Dis+ ≥ 0; an unstable hyperbolic
focus if a > 0 and Dis+ < 0 and a stable hyperbolic focus if a < 0 and Dis+ < 0; W− is a center
if a = 0; an unstable hyperbolic node if a < 0 and Dis− ≥ 0; a stable hyperbolic node if a > 0
and Dis− ≥ 0; an unstable hyperbolic focus if a < 0 and Dis− < 0, and a stable hyperbolic focus
if a > 0 and Dis− < 0.

(R2) two singular points W+ and W− : W+ is a hyperbolic saddle, and W− is a center if
a = 0; an unstable hyperbolic node if a < 0 and Dis− ≥ 0; a stable hyperbolic node if a > 0 and
Dis− ≥ 0; an unstable hyperbolic focus if a < 0 and Dis− < 0, and a stable hyperbolic focus if
a > 0 and Dis− < 0.

Proof On the curve L1 we have that b = −1 and c �= 0. Clearly system (3.1) has the unique
singular point U . The eigenvalues of the Jacobian matrix of system (3.1) at U are

−a +
√

a2 − 4c2(1 + c2)
2c

and
−a − √

a2 − 4c2(1 + c2)
2c

.

If a = 0, using the fact that system (3.1) is reversible with respect to the y-axis, and the
eigenvalues of the Jacobian matrix are ± i

√
1 + c2 we get that U is a center. When a �= 0, U

is a hyperbolic node if a2 ≥ 4c2(1 + c2). Using that c ≥ 0, it is unstable if a < 0 and stable if
a > 0, see for more details Theorem 2.15 of [7] where are described the local phase portraits of
the hyperbolic singular points. If a2 < 4c2(1 + c2), since a �= 0, then it is a hyperbolic focus,
unstable if a < 0 and stable if a > 0.
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On the curve L2, we have b > −1 and c = 2
√

b + 1. Clearly system (3.1) has the unique
singular point V . The Jacobian matrix of system (3.1) at V is

JV =

⎛
⎜⎜⎝

− a√
1 + b

0

− 2 + b√
1 + b

0

⎞
⎟⎟⎠ .

Note that b + 2 �= 0 because b > −1. The eigenvalues of the Jacobian matrix of system (3.1) at
V are 0 and −a/

√
1 + b.

If a �= 0 then it is a semi-hyperbolic point. We will use Theorem 2.19 of [7] for studying the
local phase portraits of semi-hyperbolic singular points. Doing the change of variables x = X,
y = Y − 1√

b+1
the equilibrium V goes to the origin. Now the linear change of variables

⎛
⎝u

v

⎞
⎠ =

⎛
⎝−2+b

a 1

1 0

⎞
⎠

⎛
⎝X

Y

⎞
⎠

transforms the linear part of the system into its real Jordan form. In these new variables we
get the system

u′ = − (1 + b)(2 + b)
a

u2 − 2(1 + b)(a2 + (2 + b)2)
a2

uv

− (a2 + (1 + b)(2 + b))(a2 + (2 + b)2)
a3

v2,

v′ =
a√

1 + b
v + (1 + b)u2 +

a2 + 2(1 + b)(2 + b)
a

uv

+
(1 + b)(2 + b)2 + a2(3 + b)

a2
v2.

Using Theorem 2.19 of [7] we get that V is a semi-hyperbolic saddle-node.
When a = 0 the V is a nilpotent singular point. We will use Theorem 3.5 of [7] for studying

the local phase portraits of the nilpotent singular points. Again doing the change of variables
x = X, y = Y − 1√

b+1
, and after the change x = v, y = u, and the rescaling of the independent

variable τ = 2+b√
1+b

t, we get the system

u̇ = v +
b
√

1 + b

2 + b
uv,

v̇ = − (1 + b)3/2

2 + b
u2 −

√
1 + b

2 + b
v2.

By Theorem 3.5 of [7] the singular point V is a cusp.
On the region R1. System (3.1) has two singular points W+ and W−. We use the notation

Δ in (3.2). Note that Δ > 0. The Jacobian matrix of system (3.1) at W+ is

JW+ =

⎛
⎝ −a(c+Δ)

2(1+b) −Δ

−c + b(c+Δ)
2(1+b) 0

⎞
⎠ . (3.3)

The determinant of JW+ is equal to DW+ given in (3.2). Here DW+ > 0. The trace of JW+ ,
TW+ is given in (3.2). Note that −c − Δ < 0. So, sign(TW+) = sign(a). By Remark 3.2, if
a = 0 the system is reversible with respect to the y-axis and so W+ is a center. If Dis+ ≤ 0



Quadratic Systems with Invariant Complex Ellipse 809

(see (3.2)) then W+ is a hyperbolic node (stable if a < 0 and unstable if a > 0), and if Dis+ < 0
then it is a hyperbolic focus (stable if a < 0 and unstable if a > 0).

The Jacobian matrix of system (3.1) at W− is

JW+ =

⎛
⎝ −a(c−Δ)

2(1+b) Δ

−c − b(c+Δ)
2(1+b) 0

⎞
⎠ . (3.4)

The determinant is equal to DW− given in (3.2). Here, again DW− > 0. The trace of JW− is
TW− given in (3.2). Notice that since Δ > c then sign(TW−) = −sign(a). If a = 0 the system is
reversible with respect to the y-axis and so W− is a center. If Dis+ ≤ 0 (see (3.2)) then W− is a
hyperbolic node (stable if a > 0 and unstable if a < 0), and if Dis+ < 0 then it is a hyperbolic
focus (stable if a > 0 and unstable if a < 0).

On the region R2 the study can be done in a similar way to the study in the region R1.
Again, system (3.1) has the two singular points W+ and W−. The Jacobian matrix at W+,
JW+ is given in (3.3) and its determinant, DW+ is negative. So, W+ is a hyperbolic saddle.
The Jacobian matrix at W−, JW− is given in (3.4) and its determinant, DW− is positive. The
trace of JW− is TW− . So, if a = 0 then W− is a center, and the other cases follow directly from
the hyperbolic singular theorem, see Theorem 2.15 of [7]. �

3.2 The Infinite Singular Points

Proposition 3.5 The following three statements hold.
(a) If b �= −1, system (3.1) has a pair of infinite singular points which are hyperbolic saddles

if b < −1, and hyperbolic stable nodes if b > −1;
(b) If b = −1 and a = 0 the infinity of system (3.1) is filled of singular points;
(c) If b = −1 and a �= 0, system (3.1) has a pair of infinite singular points which are semi-

hyperbolic. If c > 0 they are saddle-nodes, if c = 0 and a < 0 they are stable nodes, and if c = 0
and a > 0 they are unstable nodes.

Proof First we study the infinite singular points of the local chart U1. System (3.1) in the
local chart U1 using (2.1) is

u̇ = −a − (1 + b)u − cv − au2 − (1 + b)u3 − cu2v − uv2,

v̇ = −(1 + au + (1 + b)u2 + cuv + v2)v.
(3.5)

If b �= −1, there is a unique infinite singular point of (3.5) which is u = −a/(1 + b), v = 0. The
eigenvalues of the Jacobian matrix at this singular point are −1 and −(a2 + (1 + b)2)/(1 + b),
which implies that this singular point is a hyperbolic saddle if b < −1, and a hyperbolic stable
node if b > −1. Since the origin of the local chart U2 is not a singular point, the statement (a)
follows.

If b = −1, from the study done for system (3.5) there are no infinite singular points in the
local chart U1. System (3.1) in the local chart U2 using (2.2) is

u̇ = au + cv + v2 + au3 + cu2v,

v̇ = uv(−1 + au + cv).
(3.6)

If a = 0, then the infinity is filled by singular points.
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If a �= 0, the origin is a singular point of (3.6). It is easy to get that the eigenvalues of the
Jacobian matrix at the origin are 0 and a, which implies that the origin is a semi-hyperbolic
singular point. Using Theorem 2.19 of [7] we get that if c �= 0 then the origin is a semi-hyperbolic
saddle-node. If c = 0 and a < 0 the origin is a semi-hyperbolic stable node, and if c = 0 and
a > 0 the origin is a semi-hyperbolic unstable node. �

Proof of Theorem 1.2 Using Propositions 3.4 and 3.5, and the existence of some first integrals,
we shall obtain the global phase portraits of system (3.1) in Poincaré disc described in Figure 1.

For P1 if a �= 0 the phase portrait is given in C of Figure 1, and if a = 0 then it is given in the
D of Figure 1. We note that the phase portrait C follows from the local study of the finite and
infinite singular points done in Propositions 3.4 and 3.5 together with the Bendixson–Poincaré
Theorem, see for instance [7]. The phase portrait D follows from the fact that on P1 the system
has the first integral H = y2/(1 + x2) and all the orbits satisfy H = constant.

For L1 if a = 0 the phase portrait is given in E of Figure 1, and if a �= 0 then it is given
in F of Figure 1. The phase portrait E follows from the fact that on L1 the system has the
first integral H = (c − y)2/(1 − c2 + x2 + 2cy). The phase portrait F follows from the local
study of the finite and infinite singular points done in Propositions 3.4 and 3.5 together with
the Bendixson–Poincaré Theorem.

For L2 if a = 0 the phase portrait is given in G of Figure 1, and if a �= 0 then we get the
phase portrait H of Figure 1. Both phase portraits follow from the local study of the finite and
infinite singular points done in Propositions 3.4 and 3.5 together with the Bendixson–Poincaré
Theorem.

For R1 if a = 0 the phase portrait is given in I of Figure 1, and if a �= 0 then we get the
phase portrait H of Figure 1. The phase portrait I follows from the fact that on R1 the system
has the first integral H = (c + by)2(1 + x2 + y2)b. The phase portrait H follows from the local
study of the finite and infinite singular points done in Propositions 3.4 and 3.5 together with
the Bendixson–Poincaré Theorem.

For R2 if a = 0 the phase portrait is given in K of Figure 1, and if a �= 0 then it is given
in L of Figure 1. The phase portrait K follows from the fact that on R2 the system has the
first integral H = (c + by)2(1 + x2 + y2)b. The phase portrait L follows from the local study
of the finite and infinite singular points done in Propositions 3.4 and 3.5 together with the
Bendixson–Poincaré Theorem.

For R3 the phase portrait is given in C of Figure 1. This completes the proof of Theorem 1.2.

References
[1] Artés, J. C., Llibre, J.: Quadratic Hamiltonian vector fields. J. Differential Equations, 107, 80–95 (1994)

[2] Artés, J. C., Llibre, J., Vulpe, N.: Complete geometric invariant study of two classes of quadratic systems.

Electronic J. Differential Equations, 2012(09), 1–35 (2012)

[3] Bautin, N. N.: On the number of limit cycles which appear with the variation of coefficients from an

equilibrium position of focus or center type. Mat. Sbornik 30, 181–196 (1952); Amer. Math. Soc. Transl.,

100, 1–19 (1954)

[4] Coppel, W. A.: A survey of quadratic systems. J. Differential Equations, 2, 293–304 (1966)

[5] Date, T.: Classification and analysis of two-dimensional homogeneous quadratic differential equations

systems. J. Differential Equations, 32, 311–334 (1979)



Quadratic Systems with Invariant Complex Ellipse 811
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