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Abstract The bifurcation associated with a homoclinic orbit to saddle-focus including a pair of

pure imaginary eigenvalues is investigated by using related homoclinic bifurcation theory. It is proved

that, in a neighborhood of the homoclinic bifurcation value, there are countably infinite saddle-node

bifurcation values, period-doubling bifurcation values and double-pulse homoclinic bifurcation values.

Also, accompanied by the Hopf bifurcation, the existence of certain homoclinic connections to the

periodic orbit is proved.
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1 Introduction and Hypotheses

In the past few decades, the research on bifurcations of various dynamical systems has made
great progress. Bifurcation theory has attracted lots of attention due to its important role in
applications to many subjects (see [1–24], and the references therein). An overview of homo-
clinic and heteroclinic bifurcation theory for autonomous vector fields is given in Homburg and
Sandstede [12]. It is known from the pioneering works of [17, 18] that homoclinic connections
are important organizing centers of the three dimensional autonomous dynamical systems and
that can lead to a very rich dynamical behaviors.

One of them is the orbit homoclinic to a fixed point of saddle-focus type of the three
dimensional system. This is known as the Shil’nikov phenomena since it was first studied by
Shil’nikov [17].

Belykov [3] analyzed a three dimensional system whose principal homoclinic connection is
inside the Shil’nikov region, where the saddle index δ = −λ

γ < 1. Belykov [4] studied the
codimension-two problem of a homoclinic orbit to a saddle-focus equilibrium that is close to
the border of the Shil’nikov region, that is, δ = 1. Algaba et al. [1, 2] considered the homoclinic
connection for system with Z2-symmetry inside the Shil’nikov region.
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The symbolic dynamics of δ = 0 were firstly analyzed by Hirschberg and Knobloch [11], they
derived a 2-parameter Poincaré map modeling a 3-dimensional vector flow near the codimension-
2 point defined by a Shil’nikov homoclinic orbit to a fixed point undergoing a Hopf bifurcation.
The map is analyzed finding primary homoclinic tangencies to the small Hopf cycle. Parameter
dependence of periodic orbits associated with these tangencies is described. Global behav-
ior of the tube-like unstable manifold of the Hopf cycle is studied in depth, analytically and
numerically, locating its simplest subsidiary tangencies. Deng and Sakamoto [7] also carried
out a detailed geometric analysis to a general codimension-two Shil’nikov–Hopf bifurcation
by setting up local, global poincaré maps and using Lyapunov–Schmidt reduction. Champ-
neys et al. [5] added a non-transverse parametric condition to system (1.1), investigated the
codimension-three Shil’nikov–Hopf bifurcation caused by the non-transverse, i.e., degenerately
parametrically unfolded, Shil’nikov–Hopf bifurcation, and it contained nearby dynamics akin
to both degeneracies.

In this work, by using the technique of bifurcation theory, we will focus on the global analysis
on the following three dimensional autonomous system:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = λx − ωy + P (x, y, z, μ),

ẏ = ωx + λy + Q(x, y, z, μ),

ż = γz + R(x, y, z, μ),

(1.1)

where P, Q, R are Cr(r ≥ 2) and O(2) at the origin O(0, 0, 0). O(0, 0, 0) is a saddle-focus type
stationary point; i.e., the eigenvalues of system (1.1) linearied about (0, 0, 0) are given by λ± iω,
γ with λ ≤ 0 < γ and ω > 0.

Our main aim in this paper is to provide a geometric analysis that unfolds the dynamics
near the homoclinic cycle connecting nonhyperbolic equilibrium with a pair of pure imaginary
eigenvalues. It is proved that, in a neighborhood of the homoclinic bifurcation value, there
are countably infinite saddle-node bifurcation values, period-doubling bifurcation values and
double-pulse homoclinic bifurcation values. Also, accompanied by the Hopf bifurcation, the
existence of certain homoclinic connections to the periodic orbit is proved.

A common tool in analyzing these problems is to define a suitable codimension 1 transversal
section to the homoclinic cycle and further define two mappings whose composition gives a
Poincaré map. With the construction of this return map it is possible to derive information on
periodic orbit bifurcations as well as homoclinic bifurcations (see Shilnikov [17], Glendinning
and Sparrow [9]). The technique of analysis in this paper is also given in Wiggins [20].

Next we consider system (1.1) with the following hypotheses.
(H1) Near O(0, 0, 0) it is possible to choose coordinates (x, y, z) in such a way that the flow,

in a neighborhood of this equilibrium, is generally defined by the equations
⎧
⎪⎪⎨

⎪⎪⎩

ṙ = r(λ − r2k),

θ̇ = ω,

ż = γz,

where (r, θ) are the polar coordinates of (x, y), and λ is the principal parameter of the Hopf
bifurcation.
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Let C be the periodic orbit that emerges, for λ > 0, from the Hopf bifurcation of O(0, 0, 0).
(H2) When λ = μ = 0, system (1.1) possesses a homoclinic orbit Γ connecting O(0, 0, 0) to

itself.
The paper is organized as follows. In Section 2, we establish the bifurcation equations

by constructing the local and global Poincaré maps. In Section 3, by the analysis of the
bifurcation equations, we know that, in a neighborhood of the homoclinic bifurcation value,
there are countably infinite saddle-node bifurcation values, period-doubling bifurcation values
and double-pulse homoclinic bifurcation values. Also, accompanied by the Hopf bifurcation,
the existence of certain homoclinic connections to a periodic orbit is proved.

2 The Construction of the Poincaré Map

By [17, 24], we know that near the equilibrium O(0, 0, 0), system (1.1) can be written in the
following form (in polar coordinates with x = r cos θ, y = r sin θ)

⎧
⎪⎪⎨

⎪⎪⎩

ṙ = r(λ − r2k) + Pk(r, θ, z, μ),

θ̇ = ω + b1r
2 + · · · + bkr2k + Qk(r, θ, z, μ),

ż = γz + z(g1r
2 + · · · + gkr2k) + Hk(r, θ, z, μ),

(2.1)

where Pk, Hk = O(2k + 2), Qk = O(2k + 1), Pk(0, θ, z, μ) = Hk(r, θ, 0, μ) = 0 in the neighbor-
hood of O. O(n) represents the order is n at origin with respect to r, z.

Set up the following two Poincaré sections Σ0 and Σ1:

Σ0 = {(x, y, z)|y = 0, ε1 < x ≤ ε, 0 ≤ z < ε},
Σ1 = {(x, y, z)|z = ε},

where ε and ε1 are small enough positive numbers (see Figure 1).

Figure 1 The saddle-focus homoclinic cycle and construction of cross sections

An approximately local Poincaré map from Σ0 to Σ1 is constructed by assuming that the
dynamics inside the box {x ≤ ε, y ≤ ε, 0 ≤ z ≤ ε} are governed by the truncated equations

⎧
⎪⎪⎨

⎪⎪⎩

ṙ = r(λ − r2k),

θ̇ = ω,

ż = γz.

By integrating the flow close to the equilibrium, we obtain the following local Poincaré map

T0 : Σ0 → Σ1, (x0, 0, z0) → (x1, y1, ε),
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where

x1 = R(x0, τ (z0), λ) cos
[
ω

γ
ln

ε

z0

]

,

y1 = R(x0, τ (z0), λ) sin
[
ω

γ
ln

ε

z0

]

, (2.2)

τ (z0) =
1
γ

ln
ε

z0
,

R(x0, τ (z0), λ) =

⎧
⎪⎨

⎪⎩

x0eλτ

[

1 + 2kτx2k
0

sinh(kτ)
kλτ

ekλτ

]− 1
2k

, λ �= 0,

x0(1 + 2kτx2k
0 )−

1
2k , λ = 0,

and τ (z0) is the time of flight from Σ0 to Σ1.

We now consider Σ0 more carefully. For Σ0 arbitrarily chosen it is possible for points on Σ0 to
intersect Σ0 many times before reaching Σ1. Note that, it takes time t = 2π

ω for a point starting
in the x− z plane with x > 0 to return to the x− z plane with x > 0. Now let x = ε, 0 ≤ z ≤ ε

be the right-hand boundary of Σ0. Then if we choose x = ε(1+ 4kπε2k

ω )−
1
2k , 0 ≤ z ≤ ε to be the

left-hand boundary of Σ0, no point starting in the interior of Σ0 returns to Σ0 before reaching
Σ1. It is possible for points on Σ0 to intersect Σ0 many times before reaching the section Σ1. To
avoid this situation, we should assume some other restrictions for Σ0, thus we take ε1 satisfying

ε

(

1 +
4kπε2k

ω

)− 1
2k

< ε1 < x̄ ≤ ε,

where (x̄, 0, 0) is one of the infinitely many intersections of the homoclinic cycle Γ with Σ0.
We now consider the map T1 : Σ1 → Σ0. The time of flight is finite for the map T1 since we

are outside of a neighborhood of the stationary point O(0, 0, 0). The map T1 can be obtained
by neglecting the higher-order terms in the Taylor expansion of the flow between Σ1 and Σ0. Of
course, this approximation to T1 introduces an error. However, in Wiggins [20] it is shown that,
by continuity with respect to initial conditions, for Σ1 sufficiently small, the flow generated by
the vector field maps Σ1 onto Σ0. This implies that the higher-order terms in Taylor expansion
can be made arbitrarily small. So the error is truly negligible in the sense that it does not affect
our results. Then similar to that in Wiggins [20], the map T1 can be written as

T1 : Σ1 → Σ0, (x1, y1, ε) → (x, 0, z),
⎛

⎜
⎜
⎝

x1

y1

ε

⎞

⎟
⎟
⎠ →

⎛

⎜
⎜
⎝

x̄(μ)

0

z̄(μ)

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎝

a b 0

0 0 0

c d 0

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1

y1

0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

x

0

z

⎞

⎟
⎟
⎠ ,

where (x̄(0) = x̄, z̄(0) = 0, a, b, c, d are constants and ad − bc �= 0. Let us briefly explain the
form of T1. Since x̄ �= 0, then the term with respect to small parameter μ can be neglected in
the first row. On Σ0 the y coordinate is fixed at y = 0. This explains why there are only zeros
in the middle row of the linear part of T1. Also, the z coordinate of Σ1 is fixed at z = ε. This
explains why there are only zeros in the third column of the matrix in T1.

Further we assume
(H3) z̄′(0) �= 0.
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Now the map T1 can be simplified into the following form

x = x̄ + ax1 + by1,

z = μ + cx1 + dy1.
(2.3)

Then the first return map
T = T1 ◦ T0 : Σ0 → Σ0

is now obtained from the expressions of T1 and T0, that is,

x = x̄ + R(a cos θ0 + b sin θ0),

z = μ + R(c cos θ0 + d sin θ0),
(2.4)

where θ0 = ω
γ ln ε

z0
. For convenience, we give some new notations.

Define

Ω = −ω

γ
, A1 =

√
a2 + b2, B1 =

√
c2 + d2, δ = −λ

γ
, v0 =

z0

ε
,

a cos θ0 + b sin θ0 = A1 cos(θ0 + φ1), c cos θ0 + d sin θ0 = B1 sin(θ0 + φ2),

θ1 = φ1 − Ω ln ε, θ2 = φ2 − Ω ln ε.

Then combining with (2.4), we obtain

T : Σ0 → Σ0,

⎛

⎝
x

z

⎞

⎠ =

⎛

⎝
x̄ + RA1 cos(Ω ln z0 + θ1)

μ + RB1 sin(Ω ln z0 + θ2)

⎞

⎠ . (2.5)

After some rescaling z → ze−
γ
ω θ2 , we finally obtain the following expression for the Poincaré

map

T : Σ0 → Σ0,

⎛

⎝
x

z

⎞

⎠ =

⎛

⎝
x̄ + FA1 cos(Ω ln z0 + θ)

μ + FB1 sin(Ω ln z0)

⎞

⎠ , (2.6)

where θ = θ1 − θ2, v0 = z0
ε e−

γ
ω θ2 , and

F (x0, z0, λ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0v
−δ
0

[

1 +
x2k

0

λ
(v−2kδ

0 − 1)
]− 1

2k

, λ �= 0,

x0

(

1 − 2k
x2k

0

γ
ln v0

)− 1
2k

, λ = 0.

Also, the function F (x0, z0, λ) satisfies the following properties

lim
z0→0

F (x0, z0, λ) = 0, λ ≤ 0,

lim
z0→0

F (x0, z0, λ) = 2k
√

λ, λ > 0.

3 The Bifurcation Results

Firstly, we consider the case λ = 0, we will study the fixed points of the Poincaré map (2.6),
and give a global analysis about the different phenomena. Now (x, z) is the fixed point of the
Poincaré map (2.6) if and only if

x = x̄ + F (x, z)A1 cos(Ω ln z + θ),

z = μ + F (x, z)B1 sin(Ω ln z).
(3.1)
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Solving the first equation for x as a function of z and substituting it into the second equation,
then combining with F (x, z) → (−2k

γ ln v)−
1
2k as z → 0 small enough, where v = z

ε e−
γ
ω θ2 , the

mentioned-above equations become

z = μ +
(

− 2k

γ
ln v

)− 1
2k

B1 sin(Ω ln z). (3.2)

Solving (3.2) gives us the z-component of the fixed point, substituting this into (3.1) gives us
the x-component of the fixed point. Denote

K(z) = z − μ, G(z) =
(

− 2k

γ
ln v

)− 1
2k

B1 sin(Ω ln z).

Then system (1.1) has periodic orbit if and only if the line L1 : ξ = K(z) and the wiggly curve
L2 : ξ = G(z) have intersection points as 0 < z � 1.

By the amplitude function H(z) = B1(−2k
γ ln v)−

1
2k , we have ∂H

∂z → ∞ as z → 0, then the
line L1 and the curve L2 have countable infinity many fixed points as μ = 0, and have finite
number of fixed points as 0 < μ � 1. Also, the corresponding periodic orbits have longer period
as z → 0.

Next, we consider the stability of the bifurcated periodic orbits. It is desirable to calculate
some of the stability properties of the fixed points of (3.1) (and hence of the periodic orbits on
which they lie). Our analysis is only partial, but tells us all we need to know. The Jacobian
matrix of the map (3.1) is given by

DT =

⎛

⎝
D1 D2

D3 D4

⎞

⎠ ,

where f = (ln ε
z )−

1
2k , and

D1 = O

(

1 + 2k
x2k

γ
ln

ε

z

)− 1
2k

cos(Ω ln z + θ),

D2 = A1f

(

− 2k

γ

)− 1
2k

z−1

[
1
2k

f2k cos(Ω ln z + θ) − Ω sin(Ω ln z + θ)
]

,

D3 = O

(

1 + 2k
x2k

γ
ln

ε

z

)− 1
2k

sin(Ω ln z),

D4 = B1f

(

− 2k

γ

)− 1
2k

z−1

[
1
2k

f2k sin(Ω ln z) + Ω cos(Ω ln z)
]

.

Suppose (xp, zp) is a fixed point of the map T , then the eigenvalues of the corresponding
Jacobian matrix are given by

λ1,2 =
1
2
[(D1 + D4) ±

√
(D1 + D4)2 − 4(D1D4 − D2D3)].

Thus a fixed point (xp, zp) corresponding to a zero crossing of this wiggly curve implies D3 = 0.
In this case, λ1 = D1, λ2 = D4. So for 0 < z � 1, λ1 is small and λ2 is always large, thus the
fixed point is a saddle.

Similarly, a fixed point corresponding to a maximum of this wiggly curve implies D4 = 0.
In this case

λ1,2 =
1
2

(
D1 ±

√

D2
1 + 4D2D3

)
.
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By a simple computation, we know that |λ1,2| 
 1, thus the fixed point has two-dimensional
unstable manifold.

Now we describe the following five cases at each parameter value (see Figure 2). The proof
follows along the lines of the proof of Glendinning and Sparrow [9] (see also Wiggins [20] for
details).

Figure 2 Illustration of different parameter values

(i) μ = μ6. At this point we have a tangency, and we know that a saddle-node pair will be
born in a saddle-node bifurcation.

(ii) μ = μ5. At this point we have two fixed points; the one with the lower z value has the
larger period. Also, the one at the maximum of the curve has D4 = 0; therefore, it is unstable
node. The other fixed point is a saddle.

(iii) μ = μ4. At this point, the fixed point is a saddle since D3 = 0. Then there exists a
parameter μ = μ∗ between μ5 and μ4, at μ = μ∗, it must have changed the stability type of
fixed point via a period doubling bifurcation.

In fact, as the parameter μ changes from μ5 to μ4, the stability type of the fixed point is
changed, then there must exist a bifurcation parameter μ∗ between μ5 and μ4. But note that
the numbers of the fixed point of the map T don’t change, that is, the saddle-node bifurcation,
transcritical bifurcation and pitchfork bifurcation can not happen, then the eigenvalues of DT

do not equal to 1. If the eigenvalues λ1,2 = 1
2 (trDT ± √

(trDT )2 − 4 det(DT )) are a pair of
complex conjugate eigenvalues, then by 0 < zp � 1, we have |λ1,2| =

√
det DT 
 1. That

means DT has no complex conjugate eigenvalues having modulus 1. Thus we can conclude one
eigenvalue of DT equals to −1, which means a period-doubling bifurcation occurs.

(iv) μ = μ3. At this point, the fixed point is at the minimum of the curve, then D4 = 0
again, therefore the saddle is changed into an unstable node. This must have occurred via a
period-doubling bifurcation.

(v) μ = μ2. At this point, a saddle-node bifurcation occurs.
Now we denote the parameter values of saddle-node bifurcations by

μi, μi+1, . . . , μn, . . . → 0,

where μiμi+1 < 0.
Recall that the z component of the fixed point was given by the solutions to the equations

z − μ = G(z) = H(z) sin(Ω ln z),
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so we have

zi − μi = H(zi) sin(Ω ln zi),

zi+1 − μi+1 = H(zi+1) sin(Ω ln zi+1).

Since
Ω ln zi+1 − Ω ln zi ≈ π,

then it follows
zi+1

zi
≈ exp(Ω−1π),

it is easy to obtain

μi+1

μi
=

zi+1 − H(zi+1) sin(Ω ln zi+1)
zi − H(zi) sin(Ω ln zi)

≈ −
[ ln( ε

zi
)

ln( ε
zi+1

)

] 1
2k

≈ −1.

This quantity governs the size of the oscillations. That is, as λ = 0, namely, the saddle index
δ = 0, the decreasing rate of the amplitude of the oscillation curve is smaller than that as
0 < δ < 1, which means there are more periodic orbits near the homoclinic orbit as |μ| � 1,
and δ = 0.

In the following, we consider the existence of the double-pulse homoclinic orbits. According
to the global map T1, when the homoclinic orbit is broken under certain perturbation, the
unstable manifold intersects Σ0 at the point M+(x̄, 0, μ), thus if μ > 0, this point can be used
as an initial condition for the next map. The next point of intersection (i.e. the point TM+(μ))
has the coordinate

x = x̄ + F (x̄, μ, 0)A1 cos(Ω lnμ + θ),

z = μ + F (x̄, μ, 0)B1 sin(Ω lnμ).
(3.3)

The condition of existence of a double-pulse homoclinic orbit is TM+ ∈ W s
loc; i.e., z = 0. That

is, the new homoclinic orbit passes once through a neighborhood of the origin before falling
back into the origin. This condition is given by

−μ = F (x̄, μ, 0)B1 sin(Ω lnμ). (3.4)

By a similar analysis, we get a countable infinity of μ values

μi, μi+1, . . . , μi+n, . . . → 0,

for which these double homoclinic orbits exist.
Actually, in order to isolate the solutions of (3.4), we assume

Ω lnμ = −2πj + ξ,

or
μ = e−

2πj
Ω e

ξ
Ω ,

where j is an integer (large enough since μ should be small), and ξ ∈ [−π
2 , 3π

2 ]. Then equa-
tion (3.4) is rewritten as

sin ξ = − 1
B1

F−1(x̄, μ, 0)e−
2πj
Ω e

ξ
Ω . (3.5)
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Note that the quantity F−1(x̄, μ, 0)e−
2πj
Ω is very small when j is large enough. Hence, equa-

tion (3.5) has exactly two solutions ξ1, π − ξ1 on the interval −π
2 ≤ ξ ≤ 3π

2 , where

ξ1 = − 1
B1

F−1(x̄, μ, 0)e−
2πj
Ω + · · · .

Substituting these expressions into equation μ = e−
2πj
Ω e

ξ
Ω , we find an infinite series of bi-

furcation curves {L0
j (μ), L1

j(μ)} which correspond to the existence of double-pulse homoclinic
orbits.

Finally, we consider homoclinic connections to periodic orbit as λ > 0.
From hypothesis (H1), by a supercritical Hopf bifurcation, the periodic orbit, which exists

for λ > 0, is denoted approximately by C = {r = 2k
√

λ, z = 0} with local coordinates r, z. Note
that close to the equilibrium or close to the periodic orbit, the invariant manifolds have very
simple expressions using the coordinates given in hypothesis (H1). Now the equation z = 0
corresponds the two dimensional stable manifolds of C and the cylinder x2 + y2 = λ

1
k is the

unstable manifold of C (see [8]). The periodic orbit C is a hyperbolic orbit whose trajectory is
given by x2 + y2 = λ

1
k , and z = 0. A trivial parameterization of this curve is

(x(s), y(s), z(s)) = ( 2k
√

λ cos(s), 2k
√

λ sin(s), 0) for s ∈ [0, 2π).

The unstable manifold of C intersects Σ1 with coordinates ( 2k
√

λ cos(s), 2k
√

λ sin(s), ε). A ho-
moclinic connection will exist if one of the points of the circle is mapped by T onto z = 0,
i.e.,

c
2k
√

λ cos(s) + d
2k
√

λ sin(s) + μ = 0,

then we have
2k
√

λB1 sin(s + φ) = μ,

where B1 =
√

c2 + d2, cos φ = − d
B1

, sin φ = − c
B1

.
If a value of s is fixed in this equation, then a parameter curve μ = μ(λ) of the existence of

homoclinic connection to C is obtained.

Acknowledgements The authors would like to thank the referees for their helpful comments
and suggestions.

References
[1] Algaba, A., Merino, M., Rodrguez-Luis, A. J.: Homoclinic connections near a Belykov point in Chua’s

equation. Int. J. Bifur. Chaos, 15, 1239–1252 (2005)

[2] Algaba, A., Merino, M., Rodrguez-Luis, A. J.: Analysis of a Belykov homoclinic connection with Z2-

symmetry. Nonlinear Dynam., 69, 519–529 (2012)

[3] Belykov, L. A.: The bifurcation set in a system with a homoclinic saddle curve. Math. Z., 28, 910–916

(1980)

[4] Belykov, L. A.: Bifurcation of system with homoclinic curve of a saddle-focus with saddle quantity zero.

Math. Z., 36, 838–843 (1984)

[5] Champney, A. R., Rodrguez-Luis, A. J.: The non-transverse Sil’nikov–Hopf bifurcation: uncoupling of

homoclinic orbits and homoclinic tangencies. Phys. D, 128, 130–158 (1999)

[6] Chen, F. J., Zhou, L. Q.: Strange attractors in a periodically perturbed Lorenz-Like equation. J. Appl.

Analysis Comput., 2, 123–132 (2013)

[7] Deng, B., Sakamoto, K.: Sil’nikov–Hopf bifurcations. J. Differential Equations, 119, 1–23 (1995)



910 Xu Y. C. and Liu X. B.
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